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Abstract
In this paper we refine the procedure proposed by Lin et al. (2015) to estimate the density at a given
quantile based on a resampling method. The approach consists on generating multiple samples
of the zero-mean Gaussian variable from which a least square estimator is constructed. The main
advantage of the proposed method is that it provides an estimation directly at the quantile of interest,
thus achieving the n−1/2 parametric rate of convergence. In this study, we investigate the critical role
of the variance of the sampled Gaussians on the accuracy of the estimation. We provide theoretical
guarantees on this variance that ensure the consistency of the estimator, and we propose a grid-
search algorithm for automatic variance selection in practical applications. We demonstrate the
performance of the proposed estimator in simulations and compare the results with those obtained
using kernel density estimator.
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1 Introduction
Quantiles have become a central tool in various statistical applications, namely econometrics and
biostatistics, due to their robustness to outliers and their straightforward interpretation. This measure is
particularly valuable in fields such as survival analysis and medical research, since quantiles of survival
times allow the benefit, if any, of one treatment over another to be easily communicated in the timescale.

In those applications, the density at a fixed quantile plays an important role in several inference
procedures, including the asymptotic distribution of sample and regression quantiles, the construction
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of confidence intervals, hypothesis testing for equality of quantiles or regression parameters, and the
estimation of standard errors for quantile estimators. This quantity, referred to as the quantile density
function in Parzen (1979), is often seen as a nuisance parameter whose estimation is crucial in quantile
estimation problems. This problem is not new, as described in the work from Tukey (1965) who refers
to this quantity as the sparsity function. A high density at the quantile will correspond to a low sparsity
of the observations, which amounts to a better precision in the quantile estimation, and reciprocally.
As an illustration, the density at the quantile is essential for determining the asymptotic precision of
quantiles in two sample and regression problems (Koenker and Hallock, 2001). For the latter case,
building confidence intervals, Wald, likelihood and score tests for regression parameters requires the
estimation of this quantity (see Koenker, 1994; Koenker and Bassett, 1982; Koenker and Bassett Jr,
1978). Estimation of the density at the quantile also arises in reliability analysis, where the focus is on
the hazard quantile function, the mean residual quantile function, or on the total time on test transforms
(Nair et al., 2013).

A number of methods have been proposed for estimating the density at the quantile based on
regression quantiles, particularly in the context of location and linear regression models. Early works
considered order statistics based estimators involving a bandwidth parameter that needs to be tuned (see
Bloch and Gastwirth, 1968; Bofingeb, 1975; Siddiqui, 1960). In the one-sample case, those approaches
were generalized using kernel density estimators in Falk (1986); Yang (1985); Zelterman (1990).
In the presence of censoring, kernel density estimator of the density can also be constructed as an
Inverse-Probability-of-Censoring-Weighting (IPCW) estimator using the Kaplan-Meier estimator of the
censoring distribution (see Földes et al., 1981; Kosorok, 1999). However, a drawback of these approaches
is that they require the estimation of the density at all points of the function which results in a slow
rate of convergence that depends on the regularity of the density. More precisely, for a density β-
times differentiable, the rate of convergence is of order n−β/(2β+1) for an optimal bandwidth of order
n−1/(2β+1). Moreover, this method relies on the specification of an unknown bandwidth parameter,
which has an impact on the estimator’s performance (Heidenreich et al., 2013).

A different approach, based on resampling, has been proposed in Lin et al. (2015). The method works
for censored data and consists on generating multiple realizations of zero-mean Gaussian variables with
variance equal to one. The density at the quantile is then obtained by least square estimation. Since this
procedure estimates the density at a single point, it achieves the n−1/2 parametric rate of convergence,
which is faster than kernel density estimation. Under the framework of Lin et al. (2015), the key
contribution of our work is a rigorous analysis of the impact of the variance of the sampled Gaussians
on the accuracy of the least square estimator. In particular, we show that the estimator converges in
probability to the target density for values of the standard deviation that lie inside an interval of the type
(C1n

α, C2n
α), with C1, C2 ∈ R and α ∈ (−1/2, 1/2). We further study the Mean Squared Error (MSE)

of this estimator empirically, and observe that there exists an interval of values for the standard deviation
that gives a precise estimation of the density at the quantile. Moreover, in agreement with our theoretical
results, this interval is shown to increase with the sample size. Finally, for practical applications of our
method, we also propose a grid-search algorithm in order to automatically select the variance of the
sampled Gaussians.

This paper is organized as follows. First, we review in Section 2 the resampling procedure inspired
by Lin et al. (2015). Next, we establish in Section 3 the theoretical guarantees for the consistency of
the estimator. From this result, we derive the interval of values of the standard deviation, that depends
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on sample size, for which the resampled estimator is guaranteed to converge to the target density. In
Section 4, the MSE is studied through empirical experiments and a grid-search algorithm for automatic
variance selection is proposed for practical applications. Simulation studies are reported in Section 5 to
assess the performance of the proposed estimator constructed using our automative variance selection rule
and results are compared to the ones obtained by kernel density estimator. We conclude with a discussion
in Section 6.

2 Methods
In this section we present preliminary theoretical results that justify the validity of the proposed
resampling procedure. This is followed by a step-by-step description of the method. For more generality,
we place ourselves in the context of right-censored data, but all our results are also valid when all events
are observed. This is a direct consequence of the Kaplan-Meier estimator that reduces to the empirical
distribution function in the absence of censoring.

2.1 Preliminaries
Let T̃ be the event of interest, C be the censoring variable, and assume that those variables are
independent. We observe a sample (Ti,∆i), i = 1, . . . , n, where Ti = min(T̃i, Ci) and ∆i = 1T̃i≤Ci

.
Let p ∈ (0, 1), the quantile of order p is defined as q = inf{t : F (t) ≥ p}. Its estimator is q̂ = inf{t :
F̂ (t) ≥ p} where 1− F̂ is the usual Kaplan-Meier estimator of 1− F . We assume T̃ to be continuous
with f its density function. Our goal is to estimate f(q), the density evaluated at the quantile, which
is assumed to be positive. We also assume f to be differentiable and bounded in a neighborhood of q.
Denoting the survival function of the observed times as H(t) = P[T ≥ t], we suppose there exists τ > 0
such that H(q + τ) > 0. This condition is needed to ensure sufficient follow-up in order to be able to
estimate the quantile of interest. We have the following theoretical result.

Proposition 2.1. Assume that the previously outlined conditions hold and let q̃ = q̂ + ε/
√
n, where

ε ∼ N (0, σ2). We have:

√
n(q̂ − q) = −

√
n(F̂ (q)− p)

f(q)
+ op(1), (1)

√
n(q̃ − q) = −

√
n(F̂ (q)− F̂ (q̃))

f(q)
+ op(1). (2)

The result presented in Equation (1) is well-known and its proof is available in the literature (see for
example Kosorok (1999)). The proof for Equation (2) is detailed in the Supplemental material.

2.2 Resampling procedure
Assuming the conditions outlined in Proposition 2.1 hold, it follows by computing Equation (1) minus
Equation (2): √

n(F̂ (q̃)− p) = f(q)ε+ op(1).

This result suggests using the following resampling procedure to estimate f(q) as introduced in Lin et al.
(2015).
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Step 1: Generate B realizations of i.i.d Gaussian variables εb ∼ N (0, σ2), b = 1, ..., B.
Step 2: Compute Ŷb =

√
n
(
F̂ (q̂ + εb/

√
n)− p

)
, b = 1, ..., B. Then the least squares estimate of f(q) is

f̂(q) = (XTX)−1XŶ , where X = (ε1, ..., εB)
T , Ŷ = (Ŷ1, ..., ŶB)

T .

In practice, B should be chosen as large as possible, such as B = 105 for instance. In Lin et al. (2015)
the variance of the sampled Gaussians σ2 is fixed and equal to 1. However, in the remainder of this paper
we show that the variance of the Gaussians plays an important role and should be carefully specified, as
it impacts the quality of the estimation, especially for small sample sizes. Specifically, in the next section
we present a novel result for the consistency of the estimator, which highlights the influence of σ2 on the
convergence of the estimator to the target density. We then provide experimental evidence to illustrate
the impact of the variance on the accuracy of the estimation and, based on those findings, we propose an
automatic method to select this variance.

3 Theoretical results
In this section we present the formal mathematical development for the consistency of the estimator
of f(q). We now allow the variance of the Gaussian variables to depend on the sample size, that is
εb ∼ N (0, σ2

n) and we aim at studying the effect of σn on the consistency of f̂(q).
Since we can control the size of B, we start by studying the least-square estimator as B tends to

infinity. We start by writing:

f̂(q) =

(
1

B

B∑
b=1

ε2b

)−1

1

B

B∑
b=1

εbŶb.

From the law of large numbers and the continuous mapping theorem, the first term (
∑

b ε
2
b/B)−1

converges in probability towards 1/σ2
n as B tends to infinity. The second term is studied in the next

proposition.

Proposition 3.1. The quantity
∑

b εbŶb/B converges in probability, as B tends to infinity, towards
E[εbŶb | T1:n,∆1:n], where the conditional expectation is taken with respect to (T1,∆1), . . . , (Tn,∆n).

This result is proved in the Supplemental material. Now, using the independence between εb and the
observations, the limiting distribution in Proposition 3.1 can be expressed in the following way:

E[εbŶb | T1:n,∆1:n] =
√
n

∫ +∞

−∞
u

(
F̂

(
q̂ +

u√
n

)
− F̂ (q̂)

)
φσn

(u) du, (3)

where φσn represents the probability distribution function of the centered Gaussian variable with variance
σ2
n. Then, we write:

√
n

(
F̂

(
q̂ +

u√
n

)
− F̂ (q̂)

)
=
√
n

(
F̂

(
q̂ +

u√
n

)
− F

(
q̂ +

u√
n

))
+
√
n
(
F (q̂)− F̂ (q̂)

)
+
√
n

(
F

(
q̂ +

u√
n

)
− F (q̂)

)
.
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The term
√
n
(
F (q̂)− F̂ (q̂)

)
does not depend on u and therefore vanishes in Equation (3). On the other

hand, using a Taylor expansion, we have:

√
n

(
F

(
q̂ +

u√
n

)
− F (q̂)

)
=

(
f(q̂)u+ f ′

(
q̂ +

su√
n

)
u2

√
n

)
1q̂+ u√

n
>0 −

√
nF (q̂)1q̂+ u√

n
<0,

where s ∈ (0, 1). As a result, we have proved that f̂(q) converges in probability, as B tends to infinity,
towards

√
n

σ2
n

∫
u

(
F̂

(
q̂ +

u√
n

)
− F

(
q̂ +

u√
n

))
φσn

(u) du+
f(q̂)

σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u) du

+
1

σ2
n

√
n

∫ +∞

−q̂
√
n

f ′
(
q̂ +

su√
n

)
u3φσn

(u) du−
√
n

σ2
n

F (q̂)

∫ −q̂
√
n

−∞
uφσn

(u) du.

From this formula, each term needs to be analyzed separately in order to obtain the final result, which
is stated in the next proposition. In the proof, it is seen that the condition σn/

√
n→ 0, as n tends to

infinity, is necessary in particularly to obtain that the term f(q̂)
∫
u2φσn(u)1q̂+ u√

n
>0 du/σ

2
n tends to

f(q) in probability. For all the other terms to tend to 0, we further need the condition σn
√
n→ +∞.

This gives a precise rate of convergence for σn, as detailled in the corollary.

Proposition 3.2. Assume that the conditions presented in Section 2.1 are satisfied. We have:∣∣∣∣ 1σ2
n

E[εbŶb | T1:n,∆1:n]− f(q)

∣∣∣∣ ≤ Rn,1 +Rn,2 +Rn,3 +Rn,4,

with Rn,1 = OP(n
−1/2), Rn,2 = OP(σn/

√
n), Rn,3 = σ

−1/2
n OP(n

−1/4), Rn,4 = σ
1/2
n OP(n

−3/4) and
where the OP(·) are expressed as n→∞ and σn/

√
n→ 0.

Corollary 3.1. Assume the standard deviation of the sampled Gaussians satisfies the following
inequalities:

C1n
α < σn < C2n

α,

where α ∈ (−1/2, 1/2), C1, C2 ∈ R. Then, under the conditions presented in Section 2.1, E[εbŶb |
T1:n,∆1:n]/σ

2
n converges towards f(q) as n tends to infinity.

The proof of Proposition 3.2 can be found in the Supplemental material. Of note, in the proof, we need
to handle the case when a sample Gaussian variable εb is such that q̂ + εb/

√
n < 0. This is done using

tail properties of the Gaussian distribution. An alternative definition of f̂(q) could be proposed where
only the samples εb such that q̂ + εb/

√
n is positive, are kept. This would lead to a similar estimator and

the results stated in Proposition 3.2 would still be valid with the same rate of convergence for σn.

4 Variance selection of the sampled Gaussians
In the previous section, we have obtained theoretical results on the convergence in probability of the
density estimator at the quantile. These results show that the variance of the sampled Gaussians should
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depend on the sample size and that the interval of values for this variance increases with the sample size.
We are now interested in studying the empirical behavior for finite sample size. We begin this section by
illustrating the impact of σn on the Mean Squared Error (MSE) of the density for different sample sizes.
Then, inspired by our observations, we propose an automatic algorithm for variance selection.

4.1 Empirical impact of the variance on density estimation
We consider a survival time T that follows an exponential distribution with rate 0.12 and whose density
at the median is equal to 0.75. The censoring C is assumed to be independent of T and to follow an
exponential distribution with rate 0.12. Using the method from Lin et al. (2015), the density at the median
is estimated and the MSE is computed for a range of values of σn. For the resampling method, B = 105

zero-mean Gaussians are generated, with variance σ2
n, σn ranging from 0 to 15. The MSE is computed

from 100 Monte-Carlo replications and the results are seen in Figure 1, for sample sizes equal to n = 50,
200, 1000.

For all sample sizes, we observe that the MSE has a pattern where it decreases until it reaches a plateau,
where it remains low over a range of σn values, before increasing again. As sample size increases, the
region where the MSE is minimized becomes broader, which allows for greater flexibility when choosing
the variance within a wider interval of values where the MSE is close to zero. This is in accordance with
our theoretical results obtained in Section 3. In particular, the choice of σ2

n is particularly important for
small sample sizes.
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Figure 1. Illustration of the MSE of the density of the exponential at the median as a function of the standard
error σn for different sample sizes n.



8 XX (X)

4.2 Grid-search algorithm for automatic variance selection
In practice the true value of the density at the quantile is unknown, so we cannot directly compute
the MSE to identify the plateau described earlier. However, the presence of a plateau indicates that the
estimation remains relatively stable over a certain interval of values of σn. Thus, our strategy consists
in identifying the interval where the estimates exhibit minimal variation, which should correspond to a
region with low MSE. To this end, we propose a grid-search algorithm to automatically identify such
region from the pointwise estimates of the density at the quantile across a discrete grid of candidate
σn values. This approach allows data-driven selection of σn without requiring the knowledge of the
underlying density and its derivatives.

Our method relies on analyzing the local behavior of a sequence of pointwise estimates of f(q),
computed over a grid of σn values, using neighborhoods of fixed width h. This is a two-stage approach
described in Algorithm 1. First, we search for local extrema by evaluating each point relative to its
surrounding values within a symmetric window of size 2h+ 1. A point is identified as a candidate
extremum if it attains either the maximum or minimum value within its local neighborhood. If multiple
local extrema are found, we evaluate the local variation around each candidate by computing the sum of
absolute differences between consecutive values in the neighborhood of width h centered around each
extremum, and we select the interval with the lowest local variation. In the absence of local extrema found
from step 1, we proceed to a second stage that analyzes the local variability of the vector of estimations.
We compute the first-order absolute differences between consecutive values of the vector of estimates
and use a sliding window of width h in order to identify regions of minimal cumulative variation. The
region of size 2h+ 1 with the lowest local variation is selected. Once the plateau is identified, through
step 1 or step 2, we select a value for σn inside the detected interval.

Our procedure is illustrated on a simulated data, with the survival and censoring times following an
exponential distribution with rate 1.5 and 0.12, respectively. The true value of the density at the median is
equal to 0.75. The grid-search Algorithm 1 is implemented with σn ranging from 0 to 10, with increments
of size 0.05 and with neighborhoods of width h = 20, which results in intervals containing 41 values. The
procedure is displayed in Figure 2 on a simulated sample of size n = 200. The true value of the density
is represented by a dashed horizontal line. Our automatic grid-search method selects σn = 2.65, which
is represented in the figure as a dotted vertical line. For this value, we obtain an estimation of the density
at the median equal to 0.7486. Finally, the absolute difference between the estimation and the true value
of the density at the median is presented in Figure 3 for each σn. Similarly to the results presented in
Figure 1 for n = 200, we observe a plateau of low MSE around a large interval of values for σn, roughly
ranging from 2 to 4.
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Algorithm 1: Grid-search algorithm for variance selection of the sampled Gaussians

Input : Grid of N values σ1, . . . , σN . Vector of estimates f̂(q)i at i = σ1, . . . , σN .
Neighborhood width h.

Output: Selected value σ
Step 1: Identify local extrema with low variation
Initialize empty list candidate extrema;
for i← h+ 1 to N − h do

Define neighborhood as [f̂(q)i−h, f̂(q)i+h];

if f̂(q)i = max(neighborhood) or f̂(q)i = min(neighborhood) then
Append i to candidate extrema;

if candidate extrema is not empty then
Initialize min variation←∞, best index← ∅;
for each c ∈ candidate extrema do

Compute local variation: Vc =
∑c+h−1

k=c−h |f̂(q)k+1 − f̂(q)k|;
if Vc < min variation then

Update min variation← Vc;
Update best index← c;

Define plateau interval: [σbest index−h, σbest index+h];
return midpoint of the plateau interval;

else
Proceed to Step 2

Step 2: Select interval with minimal local variation

Compute absolute differences: di = |f̂(q)i+1 − f̂(q)i| for i = 1 to N − 1;
Initialize min variation←∞, best start← 0;
for j ← 1 to N − h do

Compute local variation in window: Vj =
∑j+h−1

k=j dk;
if Vj < min variation then

Update min variation← Vj ;
Update best start← j;

Define plateau interval [σbest start, σbest start+h];
return midpoint of the plateau interval
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Figure 2. Example of estimation of the density at the median for the exponential distribution, for multiple σn.
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Figure 3. Absolute value of the difference between the estimated f(F−1(0.5)) and the true value.
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5 Simulation study
In this section we conduct simulation experiments to compare the results for the estimation of the density
at a quantile obtained with our resampling method and with kernel density estimation. The variance for
the sampled Gaussians is obtained through the grid-search Algorithm 1, as previously described, where
we use a grid of σn that ranges from 0 to 10, with increments of size 0.05, and use neighborhoods of
width h = 20. For the kernel density estimator, the bandwidth parameter is obtained through leave-one-
out cross-validation and a Gaussian kernel is used. For all simulations we generate B = 103 zero-mean
Gaussian variables and 500 Monte Carlo repetitions are implemented. We denote as LS our resampling
procedure and as KDE the kernel density estimation. Details on the KDE method and our implementation
can be found in the Supplemental material.

Two simulation scenarios are proposed. In both scenarios, censoring times are modeled using
exponential distributions, with varying rate parameters chosen to reach 10%, 25% and 40% of right-
censored observations.

• Scenario 1: Exponential survival time with rate 1.5.

• Scenario 2: Cauchy survival time with location and scale parameters equal to 0 and 1, respectively.

Sample Size: ni = 50
Censoring Estimator Bias Variance MSE

40% LS -0.0090 0.0245 0.0245
KDE -0.1814 0.0029 0.0358

25% LS -0.0132 0.0201 0.0203
KDE -0.1834 0.0019 0.0356

10% LS -0.0170 0.0174 0.0177
KDE -0.1808 0.0015 0.0342

Sample Size: ni = 200
Censoring Estimator Bias Variance MSE

40% LS 0.0538 0.0117 0.0146
KDE -0.1830 0.0006 0.0342

25% LS 0.0481 0.0088 0.0111
KDE -0.1831 0.0004 0.0340

10% LS 0.0470 0.0075 0.0097
KDE -0.1830 0.0003 0.0338

Table 1. Results for Scenario 1.

Table 1 presents the results for Scenario 1. Across all sample sizes, the KDE method exhibits
substantially higher bias compared to the LS method. On the other hand, KDE has a smaller variance than
LS, reduced by a factor of approximately 10. The MSE is smaller for LS at all sample sizes and censoring
rates. Table 2 shows the results for Scenario 2. In this case, for small sample sizes, KDE has a slightly
lower bias than LS, while LS displays smaller variance. As the sample size increases, LS outperforms
KDE in terms of bias but with a bigger variance. As in Scenario 1, the LS method consistently achieves
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Sample Size: n = 50
Censoring Estimator Bias Variance MSE

40% LS -0.0386 0.0046 0.0060
KDE -0.0106 0.0094 0.0095

25% LS -0.0090 0.0053 0.0054
KDE 0.0002 0.0083 0.0083

10% LS -0.0084 0.0050 0.0051
KDE 0.0050 0.0073 0.0073

Sample Size: n = 200
Censoring Estimator Bias Variance MSE

40% LS 0.0054 0.0031 0.0031
KDE -0.0490 0.0008 0.0032

25% LS 0.0066 0.0026 0.0027
KDE -0.0484 0.0005 0.0028

10% LS 0.0057 0.0026 0.0026
KDE -0.0484 0.0004 0.0028

Table 2. Results for Scenario 2.

a lower MSE than KDE across all sample sizes and censoring levels. As expected, increased censoring
leads to higher MSE for both methods, while larger sample sizes result in reduced MSE.
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6 Conclusion
In this paper we reviewed the method to estimate the density at a quantile through a resampling procedure
inspired by Lin et al. (2015). Our work provided formal mathematical results for the consistency of the
proposed estimator, which had not been previously established. In particular, we emphasized the role
of the variance of the sampled Gaussians on the accuracy of the estimation and showed that it should
belong to an interval that depends on the sample size. As the sample size increases, the range of values
for which the consistency of the density estimator is achieved increases. Those results are supported by
our empirical experiments where we analyzed the effect of the variance on the MSE. Based on those
findings, we then proposed a procedure for the automatic selection of the variance, which is extremely
useful in practical applications. Finally, we compared simulation results obtained using our resampling
technique as well as the kernel density estimation, and observed an improved performance in terms of
MSE for our approach.
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1 Proofs and Technical details
In this section we provide the proofs of Proposition 3.1 and Proposition 3.2 of the main document. In
the next subsection, we start by stating a result on the Kaplan-Meier estimator evaluated at the perturbed
quantile value. We then recall some properties of the Gaussian distribution used in the proofs.

1.1 Preliminaries
The next lemma is a direct extension of Lemma 2 in Kosorok (1999). Its proof is similar and therefore
omitted.

Lemma 1.1. Under the assumptions presented in Section 2.1 of the main paper, for any interval
Kn = [−nα/2, nα/2], with α < 1, we have

sup
u∈Kn

∣∣∣∣√n

(
F̂

(
q̂ +

u√
n

)
− F̂ (q̂)

)
− f(q)u

∣∣∣∣ = op(1).

Standard results on the tail and on the expectation of the absolute value of a Gaussian variable are
presented in the next two lemmas.

Lemma 1.2. Let Z ∼ N (0, 1), we have:

P[Z ≥ z] = O

(
1

z
exp

(
−z2

2

))
,

as z tends to infinity.

Lemma 1.3. Let Z ∼ N (0, σ2), we have:

E[|Z|a] = σa

√
π
2a/2Γ

(
a+ 1

2

)
,

where Γ is the standard gamma function.

1.2 Proof of Proposition 2.1
We only need to prove Equation (2) of the main manuscript as Equation (1) is a well know result (see for
instance Lemma 1 in Kosorok (1999)). From the definition of q̃, we can directly write:

√
n(q̃ − q) =

√
n(q̂ − q) + ε

= −
√
n(F̂ (q)− F̂ (q̃))

f(q)
− F̂ (q̃)− p

f(q)
+ ε+ oP(1),

where we used Equation (1) of the main manuscript in the last equation. Now, from Lemma 1.1, the term
|(F̂ (q̃)− p)/f(q)− ε|1ε∈Kn converges to 0 in probability as n tends to infinity, where Kn is defined
as in Lemma 1.1. On the other hand, since |F̂ (q̃)− p| ≤ 1 and f(q) > 0, the term |(F̂ (q̃)− p)/f(q)−
ε|1ε∈K̄n

is bounded and also converges to 0 in probability, where K̄n is the complementary set of Kn.
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1.3 Proof of Proposition 3.1
Let α > 0, we have:

α2
1| 1

B

∑B
b=1 εbŶb−E(εbŶb|T1:n,∆1:n)|≥α ≤

(
1

B

B∑
b=1

εbŶb − E(εbŶb | T1:n,∆1:n)

)2

α2
E

(
1| 1

B

∑B
b=1 εbŶb−E(εbŶb|T1:n,∆1:n)|≥α | T1:n,∆1:n

)
≤ V

(
1

B

B∑
b=1

εbŶb | T1:n,∆1:n

)

P

(∣∣∣∣∣ 1B
B∑

b=1

εbŶb − E(εbŶb | T1:n,∆1:n)

∣∣∣∣∣ ≥ α

)
≤ 1

α2
E

(
V

(
1

B

B∑
b=1

εbŶb | T1:n,∆1:n

))
.

Recall that Ŷb =
√
n
(
F̂ (q̂ + εb/

√
n)− p

)
and use the independence between εb and (T1:n,∆1:n) to

write

V

(
1

B

B∑
b=1

εbŶb | T1:n,∆1:n

)
=

n

B
V

(
εb

(
F̂
(
q̂ + εb/

√
n
)
− p
)
| T1:n,∆1:n

)
≤ n

B
V (εb | T1:n,∆1:n) =

σ2
nn

B
,

where we used the fact that F̂ (q̂ + εb/
√
n)− p) ≤ 1. Taking the limit as B tends to infinity gives the

final result.

1.4 Proof of Proposition 3.2
From our result, obtained in Section 3 of the main paper, we have |E(εbŶb | T1:n,∆1:n)/(σn)

−2 −
f(q)| ≤ An +Bn + Cn +Dn, with

An =

∣∣∣∣f(q̂)σ2
n

∫ +∞

−q̂
√
n

u2φσn(u)du− f(q)

∣∣∣∣ ,
Bn =

1

σ2
n

√
n

∣∣∣∣∫ +∞

−q̂
√
n

f ′
(
q̂ +

su√
n

)
u3φσn

(u)du

∣∣∣∣ ,
Cn =

√
n

σ2
n

F (q̂)

∣∣∣∣∣
∫ −q̂

√
n

−∞
uφσn(u)du

∣∣∣∣∣ ,
Dn =

√
n

σ2
n

∣∣∣∣∫ u

(
F̂

(
q̂ +

u√
n

)
− F

(
q̂ +

u√
n

))
φσn(u)du

∣∣∣∣ .
We start by studying the An term. We have:

An =

∣∣∣∣f(q)σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u)du− f(q) +

f(q̂)− f(q)

σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u)du

∣∣∣∣
≤ f(q)

∣∣∣∣ 1σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u)du− 1

∣∣∣∣+ |f(q̂)− f(q)|
σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u)du.
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From the mean value inequality theorem, for sufficiently large n, |f(q̂)− f(q)| ≤ |q̂ − q|M1, for some
constant M1 > 0. Also,

∫
u2φσn(u)1u≥−q̂

√
ndu/σ

2
n ≤ 1 and from Proposition 2.1, Equation (1) from

the main document, |q̂ − q| = OP(n
−1/2). This shows:

|f(q̂)− f(q)|
σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u)du = OP(n

−1/2).

On the other hand,∣∣∣∣ 1σ2
n

∫ +∞

−q̂
√
n

u2φσn
(u)du− 1

∣∣∣∣ = 1

σ2
n

∫ −q̂
√
n

−∞
u2φσn

(u)du,

≤ 1

σ2
n

(∫
u4φσn

(u)du

)1/2
(∫ −q̂

√
n

−∞
φσn

(u)du

)1/2

,

from the Cauchy-Schwarz inequality. From Lemma 1.3, the term (
∫
u4φσn

(u)du)1/2/σ2
n is bounded by

a constant. Finally, ∫ −q̂
√
n

−∞
φσn

(u)du = OP

(
σn√
n
exp

(
− q2n

2σ2
n

))
,

as σn/
√
n tends to 0, from Lemma 1.2 and the consistency of q̂ towards q. This proves that

An = OP(n
−1/2) +OP

(√
σn

n1/4
exp

(
− q2n

4σ2
n

))
.

For Bn, the quantity |f ′(q̂ + su/
√
n)| is bounded by a constant for n large enough. Then

1

σ2
n

√
n

∫ +∞

−q̂
√
n

|u|3φσn
(u)du ≤ 1

σ2
n

√
n

(∫
u6φσn

(u)du

)1/2(∫ +∞

−q̂
√
n

φσn
(u)du

)1/2

,

from the Cauchy-Schwarz inequality. From Lemma 1.3, the term (
∫
u6φσn(u)du)

1/2/(σ2
n

√
n) is

bounded by M2σn/
√
n, for some constant M2 > 0. Next,∫ +∞

−q̂
√
n

φσn
(u)du = P[Z ≥ −q̂

√
n/σn],

where Z ∼ N (0, 1). From the consistency of q̂, this integral converges to 1 in probability, as σn/
√
n

tends to 0. This proves that:

Bn = OP

(
σn√
n

)
.
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For the Cn term, we use the Cauchy-Schwarz inequality and Lemma 1.3 as before to obtain

√
n

σ2
n

F (q̂)

∣∣∣∣∣
∫ −q̂

√
n

−∞
uφσn

(u)du,

∣∣∣∣∣ ≤
√
n

σ2
n

(∫
u2φσn

(u)du

)1/2
(∫ −q̂

√
n

−∞
φσn

(u)du

)1/2

,

≤ M3

√
n

σn

(∫ −q̂
√
n

−∞
φσn(u)du

)1/2

,

for some M3 > 0. The integral term is handled as before using Lemma 1.2 and we finally obtain

Cn = OP

(
n1/4

√
σn

exp

(
− q2n

4σ2
n

))
,

as σn/
√
n tends to 0.

We conclude with the Dn term. First, introduce Ni(t) = 1Ti≤t,∆i=1 the observed counting process,
Yi(t) = 1Ti≥t the associated at-risk process and N̄(t) =

∑
i Ni(t), Ȳ (t) =

∑
i Yi(t). Let λ and Λ be the

hazard and cumulative hazard rates, respectively. We have N̄(t)−
∫
Ȳ (u)λ(u)1u≤tdu = M̄(t), with

M̄(t) a martingale process with respect to the filtration Ft = σ(N̄(u), Ȳ (u) : 0 ≤ u ≤ t). Now write
(see for instance Andersen et al. (2012)):

√
n

(
F̂

(
q̂ +

u√
n

)
− F

(
q̂ +

u√
n

))
=

(
1− F

(
q̂ +

u√
n

))√
n

∫ q̂+ u√
n

0

1− F̂ (t−)

1− F (t)

dM̄(t)

Ȳ (t)
1q̂+ u√

n
>0.

We can decompose the integral as:

√
n

∫ q̂+ u√
n

0

1− F̂ (t−)

1− F (t)

dM̄(t)

Ȳ (t)
=

√
n

∫ q̂+ u√
n

0

dM̄(t)

Ȳ (t)

−
√
n

∫ q̂+ u√
n

0

F̂ (t−)− F (t)

1− F (t)

dM̄(t)

Ȳ (t)
·

From standard results on martingales, the asymptotic normality of the Kaplan-Meier estimator and the
consistency of q̂, we see that the second term in the right hand side of the equality is of order OP(n

−1/2).
The first term on the right-hand side of the equation can be decomposed as:

√
n

∫ q̂+ u√
n

0

dM̄(t)

Ȳ (t)
=

√
n

∫ q̂

0

dM̄(t)

Ȳ (t)
+
√
n

(∫ q̂+ u√
n

q̂

dM̄(t)

Ȳ (t)
1u>0 −

∫ q̂

q̂+ u√
n

dM̄(t)

Ȳ (t)
1u<0

)
.
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Using a Taylor expansion for F
(
q̂ + u√

n

)
and gathering all parts gives:

√
n

(
F̂

(
q̂ +

u√
n

)
− F

(
q̂ +

u√
n

))
=

(
1− F (q̂)− u√

n
f

(
q̂ +

us√
n

))(√
n

∫ q̂

0

dM̄(t)

Ȳ (t)
+

√
n

∫ q̂+ u√
n

q̂

dM̄(t)

Ȳ (t)
1u>0

−
∫ q̂

q̂+ u√
n

dM̄(t)

Ȳ (t)
1u<0 +OP(n

−1/2)

)
, (1)

for 0 < s < 1. Then

√
n

∫ q̂+ u√
n

q̂

dM̄(t)

Ȳ (t)
1u>0 =

√
n

∫ q̂+ u√
n

q̂

(
dN̄(t)

Ȳ (t)
− λ(t)dt

)
1u>0

=

√
n

n

n∑
i=1

∫ q̂+ u√
n

q̂

(
dNi(t)

H(t)
− λ(t)dt

)
1u>0

−
√
n

n

n∑
i=1

∫ q̂+ u√
n

q̂

Ȳ (t)/n−H(t)

Ȳ (t)/n

(
dNi(t)

H(t)
− λ(t)dt

)
1u>0

−
√
n

∫ q̂+ u√
n

q̂

Ȳ (t)/n−H(t)

Ȳ (t)/n
λ(t)dt1u>0, (2)

where H(t) = P[T ≥ t]. For the last term, note that, supt
√
n|Ȳ (t)/n−H(t)| = OP(1) where the

supremum is taken for t in a neighborhood of q, Ȳ (t)/n converges towards H(t) which is bounded
from below in a neighborhood of q, and∫ q̂+ u√

n

q̂

λ(t)dt1u>0 =

(
Λ

(
q̂ +

u√
n

)
− Λ(q̂)

)
1u>0 ≤ u√

n
M41u>0, (3)

for some constant M4 > 0, from the mean value inequality theorem. Here, we used the fact that
λ(t) = f(t)/S(t) which is bounded from above in a neighborhood of q. As a result

√
n

∫ q̂+ u√
n

q̂

|Ȳ (t)/n−H(t)|
Ȳ (t)/n

λ(t)dt1u>0 = u1u>0OP(n
−1/2).

We now study, for u > 0, the empirical process

Sn(v) =
√
n

∫ v+ u√
n

v

(
dN̄(t)

H(t)
− λ(t)dt

)
=

√
n

(
1

n

n∑
i=1

1v≤Ti≤v+u/
√
n∆i

H(Ti)
−
∫ v+ u√

n

v

λ(t)dt

)
,

for v in a neighborhood of q. From the independence censoring assumption, we directly see that, for
u > 0:

E

[
1v≤Ti≤v+u/

√
n∆i

H(Ti)

]
=

∫ v+ u√
n

v

λ(t)dt,
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such that Sn is centered. Then, for u > 0

V (v) := V

[
1v≤Ti≤v+u/

√
n∆i

H(Ti)

]
= E

[
1v≤Ti≤v+u/

√
n∆i

H2(Ti)

]
−

(∫ v+ u√
n

v

λ(t)dt

)2

=

∫ v+ u√
n

v

λ(t)

H(t)
dt−

(∫ v+ u√
n

v

λ(t)dt

)2

.

Since 1/H(·) is bounded, the class of functions(
1v≤Ti≤v+u/

√
n∆i

H(Ti)
−
∫ v+ u√

n

v

λ(t)dt

)
/
√
V (v)

is Donsker (see Van Der Vaart and Wellner (1996)) and Sn(v)/
√

V (v) converges towards a Brownian
motion. As a result, supv |Sn(v)|/

√
V (v) = OP(1). We can further study V (v) using the result from

Equation (3): ∫ v+ u√
n

v

λ(t)dt = u ·OP(n
−1/2).

The same argument applies to
∫
λ(t)/H(t)1v≤t≤v+u/

√
ndt and therefore V (v) = u ·OP(n

−1/2). This
proves that Sn(q̂) =

√
u ·OP(n

−1/4). Going back to Equation (2), we have that:
√
n

n

n∑
i=1

∫ q̂+ u√
n

q̂

(
dNi(t)

H(t)
− λ(t)dt

)
1u>0 =

√
u1u>0 ·OP(n

−1/4)

and
√
n

n

n∑
i=1

∫ q̂+ u√
n

q̂

Ȳ (t)/n−H(t)

Ȳ (t)/n

(
dNi(t)

H(t)
− λ(t)dt

)
1u>0

≤ M4 sup |Ȳ (t)/n−H(t)| ·

∣∣∣∣∣
√
n

n

n∑
i=1

∫ q̂+ u√
n

q̂

(
dNi(t)

H(t)
− λ(t)dt

)∣∣∣∣∣ 1u>0 =
√
u1u>0 ·OP(n

−3/4),

with M4 > 0. In Equation (1), the same rate of convergence can be obtained for∫
1q̂+u

√
n≤t≤q̂dM̄(t)/Ȳ (t)1u<0 and

√
n
∫
1t≤q̂dM̄(t)/Ȳ (t) = OP(1) from standard martingale

theory (see Andersen et al. (2012)). To conclude, gathering all the terms in Equation (1), we have shown
that:

Dn = OP(n
−1/2) +

1

σ
1/2
n

OP(n
−1/4) +

1

σ
1/2
n

OP(n
−3/4) + σnOP(n

−1) +
√
σnOP(n

−3/4)

+
√
σnOP(n

−5/4)

= OP(n
−1/2) +

1

σ
1/2
n

OP(n
−1/4) +OP(σn/

√
n) +

√
σnOP(n

−3/4).
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2 Kernel density estimation
In the presence of censoring, a typical kernel estimator of the density can be constructed by estimating the
censoring distribution from the Kaplan-Meier estimator. In Földes et al. (1981), Diehl and Stute (1988)
the following estimator has been proposed:

f̂h(q̂) =
1

nh

n∑
i=1

δi

Ŝcens(q̂i)
K

(
Ti − t

h

)
,

where Ŝcens is the Kaplan-Meier estimator of the censoring survival function and K a kernel satisfying
standard conditions. In order to compute this estimator, the kernel and the bandwidth must be chosen. In
our implementation, a Gaussian kernel was taken and the bandwidth was obtained from cross-validation.
For the choice of the bandwidth, the goal of the method is to try to minimize the Integrated Squared Error
(ISE), defined, for k = 1, 2, as:

ISE(f̂h) =
∫ (

f̂h(q̂)− fk(q̂)
)2

dt

=

∫
f̂2
h(q̂)dt− 2

∫
f̂h(q̂)fk(q̂)dt+

∫
f2
k (q̂)dt.

In this expression the last term does not depend on h and can be omitted. On the other hand, the term∫
fh(q̂)fk(q̂)dt is estimated by:

Ĵ(h) =
1

n(n− 1)h

∑
i̸=j

K

(
Ti − Tj

h

)
δikδjk

Ŝcens(q̂i)Ŝcens(q̂j)
·

Using the consistency of the Kaplan-Meier estimator, it can easily be shown that this estimator converges
in probability, as n tends to infinity, towards

∫
f̂h(q̂)fk(q̂)dt (see Marron and Padgett (1987)). In

conclusion, our cross-validated estimator is defined as the Gaussian kernel estimator with bandwidth
chosen as the minimizer of

∫
f̂2
h(q̂)dt− 2Ĵ(h), that is:

ĥ = argmin
h


∫

f̂2
h(q̂)dt−

2

n(n− 1)h

∑
i̸=j

K

(
Ti − Tj

h

)
δikδjk

Ŝcens(q̂i)Ŝcens(q̂j)

 ·

We refer the reader to Marron and Padgett (1987) for more details about the cross-validation bandwidth
selector and theoretical results regarding its validity.
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