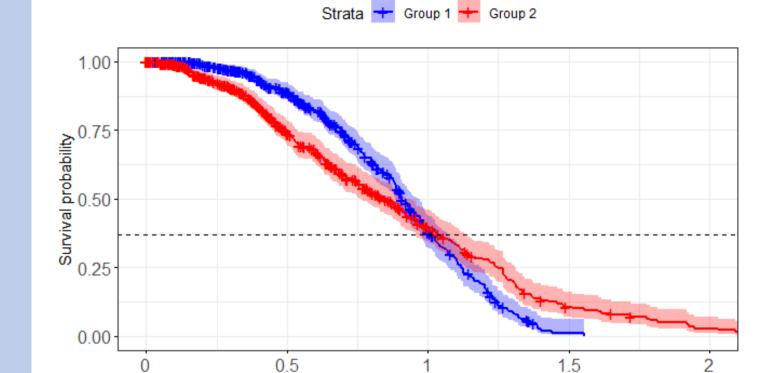
Sample size calculation based on differences of quantiles from censored data

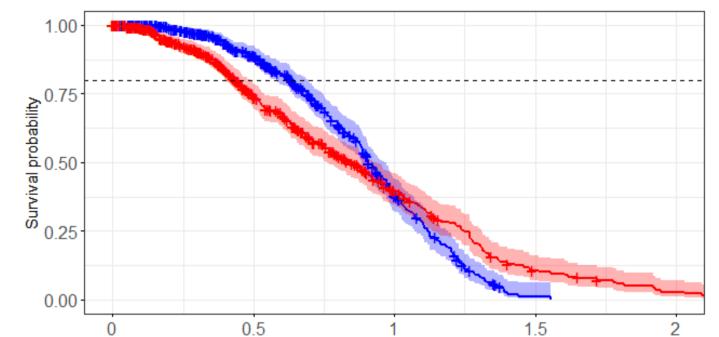
Beatriz Farah^{1, 2, 4}, Xavier Paoletti^{1, 2}, Olivier Bouaziz⁴, Aurélien Latouche^{1, 3} ¹Inserm U900, Institut Curie ²Université de Versailles–Saint-Quentin-en-Yvelines ³Conservatoire National des Arts et Métiers ⁴MAP5, Université Paris Cité

Objectives

- We present a method for computing the minimum sample size required to detect a significant treatment effect using differences in quantiles of survival time in the presence of nonproportional hazards.
- We propose a new procedure for density estimation adapted to our problem.

Simulation results for the univariate test





Introduction

- In randomized clinical trials we deal with **right-censored** data: we are interested in \tilde{T} but we observe $T = \tilde{T} \wedge C$ for a censoring time C.
- Standard methods exist to determine the sample size when the estimand is a hazard ratio in the presence of censoring, but they impose the hazard ratio of two treatments to be proportional.
- Comparing cancer treatments: immunotherapy's mechanism is indirect, resulting in delayed treatment effects
 > Nonproportional hazards!

Method

- ► Test of equality of quantiles of survival time as proposed in Kosorok[2]:
 → The pth quantile of survival time T̃ with cumulative distribution function F is F⁻¹(p) = inf_p{P(T̃ ≤ t) ≥ p}
- 1. Allows for quantile-varying treatment effects;
- 2. Accomodates for nonproportional hazards;
- 3. Is clinically interpretable as a function of time.

Univariate test for equality of quantiles

For distribution functions F, G and some probability p, we are interested in testing, for a fixed difference Δ :

Weibull survival times with 20% of censored observations:

Under H_1 : p-value of 4.4 e^{-8}

Density estimation at the quantiles

- Drawback of the Kosorok method: requires density estimation at the quantiles.
- ► The author proposes the use of kernel density estimators which:
- 1. Requires a **bandwidth parameter**;
- 2. Has a **nonparametric** estimation convergence rate.

Our proposal for density estimation

Let $Z \sim \mathcal{N}(0, 1)$ and define $\tilde{F}^{-1}(p) = \hat{F}^{-1}(p) + \frac{Z}{\sqrt{n}}$. We propose a **least squares resampling** procedure to estimate $f(F^{-1}(p))$, for ϵ a gaussian error term:

$$\underbrace{\sqrt{n}(\hat{F}(\tilde{F}^{-1}(p)) - p)}_{\vec{Y}} = -f(F^{-1}(p))\vec{Z} + \vec{\epsilon}$$

LS resampling:

Generate B realizations of the centered normal, denoted by $Z_1, ..., Z_B$;

$H_0: F^{-1}(p) = G^{-1}(p)$ vs. $H_1: F^{-1}(p) - G^{-1}(p) = \Delta$

We denote as n_1 , n_2 the sample sizes in groups 1 and 2, and define $\mu \in (0, 1)$ such that $\frac{n_1}{n} \to \mu$ as $n \to \infty$.

Let $H(t) = P(\tilde{T} \land C > t)$ be the survival function of the observed time and $\Lambda(t)$ be the cumulative hazard function for \tilde{T} .

Then the **asymptotic distribution of the test statistic** ξ_n **under** H_0 is:

$$m = \sqrt{n} rac{\hat{F}^{-1}(p) - \hat{G}^{-1}(p)}{\hat{\sigma}_{H0}} \stackrel{d}{
ightarrow} \mathcal{N}(0, 1) ext{ as } n
ightarrow \infty$$

where:

$$\hat{\sigma}_{H0}^{2} = \frac{\hat{\phi}}{\hat{\mu}\hat{f}(\hat{F}^{-1}(p))^{2}} + \frac{\hat{\gamma}}{(1-\hat{\mu})\hat{g}(\hat{G}^{-1}(p))^{2}}$$
$$\hat{\phi} = (1-p)^{2} \int_{0}^{\hat{F}^{-1}(p)} \frac{d\hat{\Lambda}(x)}{\hat{H}(x)}, \qquad \hat{\gamma} = (1-p)^{2} \int_{0}^{\hat{G}^{-1}(p)} \frac{d\hat{\Lambda}(x)}{\hat{H}(x)}$$

The **power** of the test of level α is given by:

$$1 - \beta = 1 - \Phi \left(q_{1-\alpha/2} - \frac{\sqrt{n}}{\hat{\sigma}_{H0}} \Delta \right) + \Phi \left(-q_{1-\alpha/2} - \frac{\sqrt{n}}{\hat{\sigma}_{H0}} \Delta \right)$$

where $q_{1-\alpha/2}$ denotes the quantile of order $1 - \alpha/2$ of the standard normal

2. Calculate
$$y_b := \sqrt{n} \left(\hat{F} \left(\hat{F}^{-1}(p) + \frac{Z_b}{\sqrt{n}} \right) - p \right), b = 1, ..., B;$$

3. Estimate $f(F^{-1}(p))$ by least squares: $\hat{f}(F^{-1}(p)) = (Z'Z)^{-1}Z'Y$

Results

- We compare two estimations of the density at the quantile of order 0.5 based on 500 replications. Data follows an **Exponential** distribution with 25% of censored observations, with group sample sizes of 500.
- ► The **true** density at the median is equal to 0.75.
- For the resampling procedure proposed, we generate B centered normal variables with standard deviation SD.
- The kernel density estimator uses a gaussian kernel with bandwidth parameter BW.

	Estimation	В	SD	BW	Bias	Variance	MSE
LS	0.776	1000	1		-0.026	0.173	0.174
	0.768	1000	2		-0.018	0.177	0.178
	0.787	10000	1		-0.037	0.167	0.168
	0.771	10000	2		-0.021	0.176	0.177
KDE	_ 0.756			0.1	-0.006	0.184	0.184
	0.345			1	0.404	0.226	0.389

distribution and Φ its cumulative distribution function.

Multivariate test of equality of quantiles

We may test multiple quantiles at the same time:

 $H_0: F^{-1}(p_j) = G^{-1}(p_j), j = 1, ..., J \text{ vs. } H_1: \exists i \in \{1, ..., J\}, F^{-1}(p_i) \neq G^{-1}(p_i)$ We may define $\Psi \in \mathbb{R}^{J \times J}$ such that, under H_0 :

$$Z_n = \sqrt{n} egin{bmatrix} \hat{F}^{-1}(p_1) - \hat{G}^{-1}(p_1) \ dots \ \hat{F}^{-1}(p_J) - \hat{G}^{-1}(p_J) \end{bmatrix} \stackrel{d}{ o} \mathcal{N}(0,\Psi) ext{ as } n o \infty$$

Then we have the test statistic $\xi_n = Z_n^T \Psi^{-1} Z_n$, which follows asymptotically χ_J^2 under H_0 .

Conclusions

- We developed expressions for test statistics and power of test that allows to estimate sample size in the presence of nonproportional hazards.
- ► We propose a procedure for **density estimation** which:
 - 1. Requires **no smoothing parameter**;
 - 2. Has a parametric convergence rate.

References

[1] EATON, A., THERNEAU, T., LE-RADEMACHER, J. (2020), *Designing clinical trials with (restricted) mean survival time endpoint: practical considerations*, Clinical Trials.

[2] KOSOROK, M. R. (1999), *Two-Sample Quantile Tests under General Conditions*, Biometrika.

[3] LIN, C., ZHANG, L., & ZHOU, Y. (2015), *Conditional quantile residual lifetime models for right censored data*, Lifetime data analysis.

Contact information: BEATRIZ.FARAH@CNRS.FR