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Abstract
A nonparametric test for equality of quantiles in the presence of right-censored data is studied.
We propose to construct an asymptotic test statistic for the comparison of one quantile between
two treatment groups, as well as for the comparison of a collection of quantiles. Under the null
hypothesis of equality of quantiles, the test statistic follows asymptotically a normal distribution
in the univariate case and a χ2 with J degrees of freedom in the multivariate case, with J the
number of quantiles compared. Deriving the variance of the test statistic requires the estimation
of the probability density function of the distribution of failure times at the quantile being tested. A
resampling method is presented as an alternative to kernel density estimation to perform such task.
Extensive simulation studies are performed to show that the proposed approach provides reasonable
type I probabilities and powers. We illustrate the proposed test in a phase III randomized clinical trial
where the proportional hazards assumption between treatment arms does not hold.
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1 Introduction
In clinical studies with right-censored data, investigators have been increasingly interested in estimating
the quantiles of the survival times, which are defined as being the smallest time when survival exceeds a
threshold of interest1,2. As this measure is expressed in the timescale, the quantification of the benefit of
one treatment arm over the other can be easily communicated and understood by clinicians and patients,
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in contrast to relative risk measures such as the hazard ratio which can be easily misinterpreted3,4. In
addition to allowing the benefit, if any, of the new treatment to be expressed in terms of time gained
compared to the standard of care, the use of quantiles allows for robustness against outliers and does not
depend on the shape of the survival distribution or the proportionality of the treatment effect. In particular,
in immuno-oncology trials the usual assumption of proportional hazards between treatment arms is
often not verified due to the delayed effect of immunotherapy and late separation of survival curves1.
Given that the quantification of treatment effects using differences in quantiles inherently accounts for
nonproportional hazards, this approach is particularly well-suited for such scenarios.

Few methods have been developed to compare quantiles of the survival function in the presence of
censored data. Brookmeyer and Crowley (BC)5 proposed a pooled-weighted Kaplan-Meier estimation
approach in order to detect differences in the median survival times among several treatments. In order to
avoid the estimation of the densities of the time-to-event in each treatment group, the authors proposed
a simplified test statistic, which is only valid under the assumption that the survival distributions are
equal in each group under the null hypothesis. However, testing for homogeneity of survival distributions
is much stronger than testing for equality of survival medians. Indeed, identical survival distributions
imply equal median survival times, while the converse is not true. Therefore, type I error is inflated when
distributions differ between treatment groups for this method, which makes its application to real data
limited.

The BC test was modified by Tang and Jeong6, who employed contingency tables as an alternative
to calculating the inverse of the BC test statistic in order to avoid estimating the density distribution of
failure times. Rahbar et al.7 proposed another nonparametric test, similar to the BC test, but where the
difficulty of estimating the density is addressed by using the bootstrap approach to obtain the asymptotic
variance of the test. In general these nonparametric methods have inflated type I error rates, which make
their use limited in practice, especially when the sample sizes are small8. Another extension of the BC
test has been proposed by Chen and Zhang8. However, like all aforementioned methods, this test can only
be applied to compare one quantile at a time and authors do not propose an explicit calculation of the
power of the test. Moreover, these previous works do not address the formulation of clinical trials, which
is a key aspect in the context of sample size estimation and in analyzing the impact of design parameters
on the power of the test.

A versatile method for evaluating treatment effects by comparing pre-specified quantiles in each
treatment group was proposed by Kosorok9. The author derived a nonparametric two-sample test for
the comparison of quantiles that allows for testing the equality of multiple quantiles as well as testing
the equality of one single quantile obtained at multiple analysis times. The test also applies to general
censoring schemes, such as double censoring for instance, and several kinds of empirical distribution
estimators. It can also be directly applied to group sequential clinical designs with staggered patient
entry.

However, the estimation of the variance of the test statistic depends on the value of the density of
survival at the quantile of interest. Kosorok proposed the use of kernel density estimators in order to
complete this task. A drawback of this approach is that it requires the estimation of the density at all points
and relies on an unknown bandwidth parameter, which has an impact on the estimator’s performance10.
To address this issue, we propose a resampling approach inspired by Lin et al.11 to estimate the density
directly at the point of interest without requiring a bandwidth parameter. We compare the Type I error
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and the power obtained using both density estimation methods for testing the equality of quantiles in the
presence of data and observe an improved performance of our method.

Under Kosorok’s framework, the key contribution of our work is the explicit derivation of closed-form
formulas for the asymptotic power of the test for both univariate and multivariate quantile comparisons.
This method is illustrated in clinical trial planning and minimal sample size calculation, as well as in
testing for the equality of quantiles in the presence of clinical trial data.

This paper is organized as follows. First, we present the theoretical results for the univariate and
multivariate tests of equality of quantiles. Next, we derive analytical power of the test in the context of
planning clinical trials with known survival distributions. We then present applications of the method to
a lung cancer dataset from the OAK randomized clinical trial12, where we illustrate its use in comparing
both single and multiple quantiles. We conclude with a discussion.

2 Methods
We consider a two-arms clinical trial, where n1 patients are randomly allocated to treatment group
1 and n2 to treatment group 2. We observe for each patient i ∈ {1, ..., nk}, k = 1, 2, the observed
times Tik = min(T̃ik, Cik) and censoring status δik = 1T̃ik≤Cik

, where T̃ik are the continuous times of
interest and C̃ik the censoring times. Let n = n1 + n2 and µ̂k = nk/n, we assume that µ̂k converges
to an element µk in (0, 1). We also assume that the event times T̃1k, . . . , T̃nkk and the censoring
times C1k, . . . , Cnkk are independent, for k = 1, 2. Let Fk be the cumulative distribution function in
each treatment arm with fk, Λk and Sk the density, hazard, cumulative hazard and survival functions,
respectively. We denote the survival function of the observed times Tik, as Hk. We define the usual inverse
distributions as F−1

k (p) = inf{t : Fk(t) ≥ p}, k = 1, 2, for a given probability p ∈ (0, 1). Following
Kosorok9, we require the densities at the quantiles to be positive for both treatment groups. We also
suppose that there exists ϵ > 0 such that Hk(F

−1
k (p) + ϵ) > 0, k = 1, 2. This condition is needed to

ensure sufficient follow-up in order to be able to estimate each quantile of interest.
We denote as F̂k, k = 1, 2, the Kaplan-Meier estimator of Fk, from which we derive F̂−1

k (p), the
estimator of the inverse distributions at p. Our method is based on the asymptotic distribution of F̂−1

k (p)
as derived in Kosorok9. In this work, the asymptotic variance depends on the density at the quantile
F−1
k (p), which needs to be estimated in order to construct a statistical test. This estimator is denoted by

f̂k which we propose to estimate by either kernel density estimation or a resampling procedure inspired
by Lin et al.11 This method consists on generating multiple realizations of the centered Gaussian variable
with variance σ2, and then performing the least squares estimation which gives directly an estimation
of the density at the quantile of interest F−1

k (p) for a given probability p and group k. We propose an
automatic grid-search algorithm in order to choose the variance of the generated Gaussian. Our procedure
has the advantage of providing an estimation of the density directly at the point of interest, contrary to
kernel density estimation which requires an estimation at all data points. Indeed, it is well known13 that
kernel density estimators have a slow rate of convergence (in particular, slower than n−1/2), that depends
on the regularity of the density. For instance, if the density is assumed to be differentiable, then the
rate of convergence is of order n−1/3 for an optimal bandwidth of order n−1/3. On the other hand, the
resampling procedure estimates the density at a single point, thus achieving the n−1/2 parametric rate of
convergence. Further details on the resampling and kernel density methods are provided in Supplemental
material.
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2.1 Univariate test
We are interested in testing the null hypothesis H0 : F−1

1 (p) = F−1
2 (p) against the alternative hypothesis

H1 : F−1
1 (p)− F−1

2 (p) = ∆, for a difference in quantiles ∆ ∈ R,∆ ̸= 0. Such a null hypothesis allows
to investigate the benefit, if any, of the experimental arm over the control arm at a given quantile.
Assuming the conditions outlined in Section 2 hold for groups k = 1, 2, it follows from Lemma 1 from
Kosorok9, with theoretical derivations detailed in Supplemental material,

√
n(F̂−1

k (p)− F−1
k (p))

d−→ N
(
0, (1− p)2

ϕk

µkfk(F
−1
k (p))2

)
as n → ∞,

where

ϕk =

∫ F−1
k (p)

0

dΛk(x)

Hk(x)
·

We prove in Supplemental material that under H0,

√
n(F̂−1

1 (p)− F̂−1
2 (p))

d−→ N
(
0, σ2

H0

)
as n → ∞,

where

σ2
H0

= (1− p)2
(

ϕ1

µ1f1(F
−1
1 (p))2

+
ϕ2

µ2f2(F
−1
2 (p))2

)
.

We propose the following test statistic for the univariate test of equality of quantiles:

Tn =
√
n
F̂−1
1 (p)− F̂−1

2 (p)

σ̂H0

, with

σ̂2
H0

= (1− p)2

(
ϕ̂1

µ̂1f̂1(F̂
−1
1 (p))2

+
ϕ̂2

µ̂2f̂2(F̂
−1
2 (p))2

)
,

where ϕ̂1 and ϕ̂2 are obtained by the usual Greenwood’s estimate of the Kaplan-Meier variance, and
f̂1(F̂

−1
1 (p)), f̂2(F̂

−1
2 (p)) are consistent estimators for the densities, such as kernel density estimators or

the resampling procedure inspired by Lin et al.11

Then the following results hold:

1. Under H0 : F−1
1 (p) = F−1

2 (p), Tn
d−→ N (0, 1) as n → ∞.

2. Under H1 : F−1
1 (p)− F−1

2 (p) = ∆, Tn −
√
n

∆

σ̂H0

d−→ N (0, 1) as n → ∞.

For a test with type I error α and power 1− β, as n goes to infinity,

PH0
(|Tn| > q1−α

2
) → α,

where q1−α
2

is the quantile of order 1− α/2 of the standard normal distribution.
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Let Φ be the cumulative distribution function of the standard normal distribution. From the asymptotic
distribution of Tn under H1, we derive the following asymptotic formula for the power of the test:

1− β ≈ 1− Φ

(
q1−α

2
−

√
n

σ̂H0

∆

)
+Φ

(
−q1−α

2
−

√
n

σ̂H0

∆

)
.

Details and proofs can be found in Supplemental material.

2.2 Multivariate test
We now present general results for multivariate two-sample tests of equality of quantiles. The proofs are
provided in Supplemental material. We aim to test, for a given J , the null hypothesis H0 : F−1

1 (pj) =
F−1
2 (pj), j = 1, ..., J against the alternative hypothesis H1 : F−1

1 (pj)− F−1
2 (pj) = ∆j , ∃j : ∆j ̸= 0.

Assuming the conditions outlined in section 2 are satisfied, then for k = 1, 2:

√
n



F̂−1
k (p1)− F−1

k (p1)

fk(F
−1
k (p1))

...

F̂−1
k (pJ)− F−1

k (pJ)

fk(F
−1
k (pJ))


d−→ N (0,ΥFk

) as n → ∞,

where:

(ΥFk
)jl =



(1− pj)
2
∫ F−1

k (pj)

0

dΛk(x)

Hk(x)

µk

(
fk(F

−1
k (pj))

)2 , if j = l

(1− pj)(1− pl)
∫ F−1

k (pj)∧F−1
k (pl)

0

dΛk(x)

Hk(x)

µkfk(F
−1
k (pj))fk(F

−1
k (pl))

, otherwise.

It follows that, under H0,

Zn =
√
n


F̂−1
1 (p1)− F̂−1

2 (p1)

...

F̂−1
1 (pJ)− F̂−1

2 (pJ)

 d−→ N (0,Ψ) as n → ∞,

where Ψ = ΥF1
+ΥF2

. In order to implement the test, we assume Ψ to be invertible. For the multivariate
test of equality of quantiles, our test statistic has the following form:

Tn = ZT
n Ψ̂

−1Zn,

where Ψ̂ is obtained by replacing each component by its estimate, as in the univariate case.
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Then the following results hold:

1. Under H0 : F−1
1 (pj) = F−1

2 (pj), j = 1, ..., J , Tn
d−→ χ2

J as n → ∞.
2. Under H1 : F−1

1 (pj)− F−1
2 (pj) = ∆j , j = 1, ..., J , Tn is asymptotically equivalent to

χ2
J(Ψ

−1/2ξ), an uncentered chi-squared distribution with J degrees of freedom and mean
Ψ−1/2ξ, with

ξ =
√
n


∆1

...

∆J

 ·

The power of the multivariate test for equality of quantiles at level α as n → ∞ expresses as:

1− β ≈ 1− Fχ2
J (Ψ

−1/2ξ)(qJ,1−α),

where Fχ2
J (Ψ

−1/2ξ) is the cumulative distribution function of the uncentered chi-squared distribution
with J degrees of freedom and mean Ψ−1/2ξ, and qJ,1−α denotes the quantile of order 1− α of the
chi-squared distribution with J degrees of freedom.

3 Illustration and results
The proposed method for univariate and multivariate tests for quantiles comparison is relevant in two
main application frameworks. First, it is useful in sample size planning scenarios where one is interested
in designing a clinical trial to compare treatment effects in the quantile scale. In this case, our method
enables the calculation of statistical power for a given sample size at a fixed significance level. Similarly,
it can be used to determine the minimum sample size required to achieve sufficient power for a test at a
fixed level. Second, the method can be applied when survival data from both control and experimental
arms are available, and we are interested in testing the hypothesis of equality of quantiles between two
survival distributions. Both applications are presented in this section.

3.1 Planning a clinical trial
The results derived in the previous section allow sample size and power calculations for tests of equality
of quantiles in the context of planning clinical trials in the presence of censoring. Assuming known
distributions for survival times and censoring, one can compute the explicit power obtained by the test,
or in an equivalent way, derive the minimum sample size required in order to achieve a fixed power.

We present simulations to illustrate the planning of a clinical trial using the proposed test of equality
of quantiles. Two versatile scenarios were considered in the subsequent results, inspired by Eaton et
al.14, which allow to illustrate multiple realistic frameworks including proportional and nonproportional
survival (Figure 1). Groups k = 1, 2 correspond to the control and experimental arm, respectively. In all
scenarios, survival time in the control arm follows an exponential distribution with rate λa.



7

The survival time distribution in the experimental arm is specified as follows, for each simulation
scenario:

• Scenario 1 (proportional hazards): Exponential with rate λb.
• Scenario 2 (late differences): Piecewise exponential with rate λa until time tcut and λb onward.

In all scenarios, the distribution of censoring time is exponential with rate λcens. Using the expression
derived in the previous section, it is possible to compute the analytical power as a function of the
parameters for each scenario.

Indeed, for a fixed difference in quantiles equal to ∆, if both arms are exponential (scenario 1), one may
deduce the expression for the rate of experimental arm as λb = − log(1− p)/(F−1

1 (p)−∆). Moreover,
under independent censoring, it is possible to write the analytical expressions for the variance σ2

H0
:

ϕ1 =
λa

λa + λcens
(e(λa+λcens)F

−1
1 (p) − 1)

ϕ2 =
λb

λb + λcens
(e(λb+λcens)F

−1
2 (p) − 1)

σ2
H0

=
(1− p)2 λa

λa+λcens
(e(λa+λcens)F

−1
1 (p) − 1)

µ̂1(λae−λaF
−1
1 (p))2

+
(1− p)2 λb

λb+λcens
(e(λb+λcens)F

−1
2 (p) − 1)

µ̂2(λbe−λbF
−1
2 (p))2

·

These quantities allow us to have an explicit expression for the power of the test.
We derive similar results for the second scenario, where we observe nonproportional hazards and late

treatment effects. We have the following expression for the quantile in the experimental arm:

F−1
2 (p) =

{
− log(1−p)

λa
, 0 ≤ p < 1− e−λatcut

tcut −
(

log(1−p)+λatcut
λb

)
, p ≥ 1− e−λatcut

In order to ensure the realization of this scenario, we require that F−1
1 (p)− tcut > ∆, which is equivalent

to F−1
2 (p) > tcut when specifying the parameters. For this scenario, we have the same ϕ1 as the one where

both arms are exponential, while the expression for ϕ2 is now written as:

ϕ2 =
λa

λa + λcens
(e(λa+λcens)tcut − 1) +

(
λb

λb + λcens
e(λa−λb)tcut

)(
e(λb+λcens)F

−1
2 (p) − e(λb+λcens)tcut

)
In all simulations we compare the medians in both groups and we assume that the number of patients in
each arm is the same. We choose λcens in order to have approximately 25% of censoring in each group.
We fix the rate of the control group in both scenarios as λa = 1.5 and tcut = 0.2 in scenario 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Comparison of scenarios. Top row: Scenario 1 with true survival curves and power analyses.
Bottom row: Scenario 2 with similar comparisons. The solid line represents the control arm and the dashed
line represents the experimental arm.

For these two scenarios, we assess the performance of the power formula on finite samples. For this, ten
thousand simulations were performed to compare the asymptotic power obtained by the explicit formula
to the empirical power obtained from simulations. Results shown in Table 1 confirm that the analytical
formula provides a good approximation even with modest sample sizes and that type I error is well
controlled.

∆
Scenario 1 Scenario 2

Empirical Formula Empirical Formula

0 0.047 0.05 0.047 0.05
0.1 0.714 0.703 0.782 0.766
0.2 1.000 1.000 1.000 1.000

Table 1. Type I error and Power of the test of equality of quantiles for sample size ni = 500.

One interest of the explicit power formula is its ability to compute the minimum sample size required
in order to detect a fixed difference at a desired power. We illustrate this application by fixing a desired
power and treatment effect and comparing the minimum sample size required for each scenario when
testing for the equality of medians. The results are provided in Table 2. Analytical power can be plotted
at increasing quantile difference for various sample sizes, which is presented in Figure 2. Across both
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Power ∆
Scenario 1 Scenario 2

Sample Size Sample Size

0.95 0.1 1047 901
0.2 214 173

0.90 0.1 846 729
0.2 173 140

0.80 0.1 632 545
0.2 129 105

Table 2. Minimal sample size per group.

scenarios, power increases with sample size, as expected. Differences between treatment arms at the
median are illustrated in scenario 2 for ∆ ∈ [0, 0.25] in order to satisfy the condition F−1

1 (p)− tcut > ∆.

Figure 2. Power for various differences in quantiles in scenarios 1 (on the left) and 2 (on the right).

3.2 Application of the test on data from the OAK study
In this section, we apply our method to the OAK randomized clinical trial, registered under
ClinicalTrials.gov (NCT02008227). This study compared immunotherapy with chemotherapy in 850
patients with metastatic non-small-cell lung cancer, the primary endpoint being the overall survival.
Following Mboup et al.1, we use reconstructed survival data generated by the algorithm developed
in Rittmeyer et al.12 to emulate survival times for both treatment arms, enabling our analysis. The
reconstructed Kaplan-Meier curves are seen in Figure 3.

The implementation of the test statistic requires the value of the density at the quantiles for both
treatment arms. We compare two approaches for density estimation, kernel density estimation and an
original resampling procedure inspired by Lin et al.11, here referred to as KDE and LS respectively.
In our implementation, the bandwidth parameter for the KDE is obtained through leave-one-out cross-
validation. The LS method requires the specification of a variance for the generated Gaussians in the
resampling procedure, which we propose to obtain using an automatic grid-search algorithm. Further
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details on the LS method, variance selection and the KDE method can be found in Supplemental material.

Figure 3. Reconstructed Kaplan-Meier curves. The dashed lines represent the survival quantiles at
probabilities 0.05, 0.1, 0.3, 0.5 and 0.7.

3.2.1 Application of the univariate test We compute the power of the univariate test of equality of
quantiles for OAK data. The test was applied at quantiles of order 0.3, 0.5 and 0.7, and differences
between treatment arms are estimated for each quantile. The results are presented in Table 3.

For all quantiles considered, patients treated with immunotherapy have a positive survival average
benefit compared with patients treated with immunotherapy, which can be directly interpreted in
terms of survival time. Taking the median, for instance, we may say that, on average, patients from
the immunotherapy group have 50% of chance to survive 4.04 months more than patients in the
chemotherapy group.

At the median, we compare our approach with the test of equality of medians proposed in Tang and
Jeong6, which gives a p-value of 2.22× 10−3 for this setting.

p ∆̂
P-Value Test Statistic

LS KDE LS KDE

0.3 -1.01 1.13× 10−2 8.49× 10−2 -2.53 -1.72
0.5 -4.04 5.03× 10−4 5.35× 10−3 -3.48 -2.79
0.7 -6.76 4.39× 10−9 5.05× 10−7 -5.87 -5.02

Table 3. P-Values and Test Statistics for LS and KDE Methods for the univariate test.
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All methods lead to the same statistical conclusion of rejection of the null hypothesis at each of the
tested quantiles. In all cases, the test with the LS method for density estimation yields the most significant
p-values.

3.2.2 Application of the multivariate test One advantage of the proposed test of equality of quantiles is
its direct application for multivariate two-sample tests of equality of quantiles. In this section we present
the results obtained for the comparison of pairs of quantiles, which can be generalized in order to compare
any set of J quantiles. We apply the multivariate test to three pairs of quantiles: {(0.05, 0.1), (0.1, 0.5),
(0.5,0.7)}. The results are provided in Table 4, where either KDE or LS were used for computing the
density at the quantiles which are needed for the estimation of the matrix of variance-covariance of the
test statistic.

p ∆̂
P-Value Test Statistic

LS KDE LS KDE

0.05, 0.1 -0.03, -0.06 9.83× 10−1 9.91× 10−1 0.03 0.02
0.1, 0.5 -0.06, -4.04 3.39× 10−2 1.18× 10−1 6.77 4.28
0.5, 0.7 -4.04, -6.76 4.61× 10−6 1.80× 10−3 24.58 12.65

Table 4. P-Values and Test Statistics for LS and KDE Methods for the multivariate test.

The first row of Table 4 corresponds to the scenario where the null hypothesis is satisfied. In this case,
the null hypothesis is not rejected by both methods with p-values close to 1. In the second row, we have
a case where the difference of quantiles is close to zero (equal to 0.06 in absolute value) for one of the
probabilities and close to 4 in absolute value for the other. For a test of level 0.05, one rejects the null
hypothesis when using the LS method for density estimation and does not reject it when the density is
estimated by the KDE procedure. This is the only case among the three scenarios where, depending on
the density estimation procedure, the conclusion of the test changes. This suggests a loss of power for the
KDE procedure, which might be explained by the increased variability in this method due to its need to
estimate the density at all points.

Lastly, we explore a scenario where there is a marked difference in quantiles for both probabilities,
equal in absolute value to 4.04 and 6.76 for the survival quantiles 0.5 and 0.7 respectively. In this case,
both methods reject the null hypothesis, and the procedure that uses LS density estimation is the most
significant one.

4 Discussion
In this paper we derived the analytical expressions for the power calculation for the univariate and
multivariate tests of equality of quantiles proposed by Kosorok9. The explicit formulas can be used
in different situations when evaluating the effects of a new treatment against standard of care, such as
computing minimum sample size when planning clinical trials or comparing quantiles in the presence
of clinical data. The power formula was analytically derived and its asymptotic behavior was studied
in simulations for the scenarios where there are proportional and nonproportional hazards. The power
formula can be derived for general situations, by assuming different distributions for survival and
censoring. The proposed test was illustrated in the context of immuno-oncology trials with late treatment
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effects and nonproportional hazards. Estimation techniques are needed in order to perform the necessary
power calculations for the test in presence of data. We showed the results obtained by using kernel density
estimation as well as a resampling technique proposed by us, with an improved power for the resampling
approach.

One major advantage of our proposed method is that it allows for multivariate tests, which can be
further extended to group sequential clinical trials with staggered entry of patients and several interim
analyzes. Furthermore, although the proposed test is designed for detecting the differences in quantiles
of survival times, one could extend this approach to investigate co-primary endpoints to assess the effect
of a randomized treatment jointly on the hazard and a given quantile or on the Restricted Mean Survival
Time (RMST)14 and a given quantile. Indeed, there is a subtle connection between RMST and percentile
of survival because in practice, the choice of a clinically relevant restriction time imposes a percentile of
survival. This is left to future research work.
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1 Proofs and Technical details

1.1 Univariate test
In this section, we present the proofs for the results in Section 2.1 of the main document, for the univariate
test. We first recall the expression of the statistical test in the univariate case.

Tn =
√
n
F̂−1
1 (p)− F̂−1

2 (p)

σ̂H0

, with

σ̂2
H0

= (1− p)2

(
ϕ̂1

µ̂1f̂1(F̂
−1
1 (p))2

+
ϕ̂2

µ̂2f̂2(F̂
−1
2 (p))2

)
.

Result 1. Under H0 : F−1
1 (p) = F−1

2 (p), Tn
d−→ N (0, 1) as n → ∞

Proof. From Lemma 1 from Kosorok1, for k = 1, 2,

F̂−1
k (p)− F−1

k (p) =
F̂k(F

−1
k (p))− p

fk(F
−1
k (p))

+ op

(
1

√
nk

)
It follows from Theorem 6.3.1 from Fleming and Harrington2 that:

√
nk

(
F̂k(F

−1
k (p))− p

fk(F
−1
k (p))

)
d−→ N

(
0, (1− p)2

ϕk

fk(F
−1
k (p))

)
, with

ϕk =

∫ F−1
k (p)

0

dΛk(x)

Hk(x)
·

Under H0, from the independence between treatment groups, as n → ∞, we have that

√
n

[
F̂1(F

−1
1 (p))− p

f1(F
−1
1 (p))

− F̂2(F
−1
2 (p))− p

f2(F
−1
2 (p))

]
d−→ N

(
0, (1− p)2

[
ϕ1

µ1f1(F
−1
1 (p))2

+
ϕ2

µ2f2(F
−1
2 (p))2

])
Then, σ̂H0

→ σH0
as n → ∞ from the consistency of Greenwood’s estimator of the Kaplan-Meier

variance, the consistency of the density estimators and the consistency of µ̂k, k = 1, 2. Finally under
H0, we have the decomposition

F̂−1
1 (p)− F̂−1

2 (p) = F̂−1
1 (p)− F−1

1 (p)− (F̂−1
2 (p)− F−1

2 (p)),

which concludes the proof.

Result 2. Under H1 : F−1
1 (p)− F−1

2 (p) = ∆, Tn −
√
n

∆

σ̂H0

d−→ N (0, 1) as n → ∞

Proof. Under H1,
√
n(F̂−1

1 (p)− F̂−1
2 (p)) =

√
n(F̂−1

1 (p)− F−1
1 (p))−

√
n(F̂−1

2 (p)− F−1
2 (p)) +

√
n∆.
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We denote
Zn =

√
n(F̂−1

1 (p)− F−1
1 (p))−

√
n(F̂−1

2 (p)− F−1
2 (p)).

Then, from Lemma 1 from Kosorok1,

Zn =
√
n

(
F̂1(F

−1
1 (p))− p

f1(F
−1
1 (p))

)
−
√
n

(
F̂2(F

−1
2 (p))− p

f2(F
−1
2 (p))

)
+ op

(
1√
n

)
.

It follows, for n → ∞:

Zn
d−→ N

(
0,

(1− p)2ϕ1

µ1f1(F
−1
1 (p))2

+
(1− p)2ϕ2

µ2f2(F
−1
2 (p))2

)
From the consistency of σ̂H0

, we therefore have Zn/σ̂H0

d−→ N (0, 1), which gives the desired result
using the relation

Tn = Zn/σ̂H0 +
√
n∆/σ̂H0 .

Result 3. We have the following asymptotic formula for the power of the test of level α:

1− β ≈ 1− Φ

(
q1−α/2 −

√
n

σ̂H0

∆

)
+Φ

(
−q1−α/2 −

√
n

σ̂H0

∆

)
where Φ is the cumulative distribution function of the standard normal variable and q1−α/2 is the quantile
of level 1− α/2 of the standard normal distribution.

Proof. Using the derived expression for the test statistic and denoting as q1−α
2

the quantile of order
1− α

2 of the standard normal distribution,

1− β = PH1(|Tn| > q1−α
2
)

= PH1

(
√
n

∣∣∣∣∣ F̂−1
1 (p)− F̂−1

2 (p)

σ̂H0

∣∣∣∣∣ > q1−α
2

)

= PH1

(
√
n

∣∣∣∣∣
(
F̂−1
1 (p)− F−1

1 (p)

σ̂H0

)
−

(
F̂−1
2 (p)− F−1

2 (p)

σ̂H0

)
+

∆

σ̂H0

∣∣∣∣∣ > q1−α/2

)

≈ PH1

( √
n

σ̂H0

(
F̂1(F

−1
1 (p))− p

f1(F
−1
1 (p))

− F̂2(F
−1
2 (p))− p

f2(F
−1
2 (p))

)
> q1−α/2 −

√
n∆

σ̂H0

)

+ PH1

( √
n

σ̂H0

(
F̂1(F

−1
1 (p))− p

f1(F
−1
1 (p))

− F̂2(F
−1
2 (p))− p

f2(F
−1
2 (p))

)
< −q1−α/2 −

√
n∆

σ̂H0

)

≈ PH1

(
Zn

σ̂H0

> q1−α/2 −
√
n∆

σ̂H0

)
+ PH1

(
Zn

σ̂H0

< −q1−α/2 −
√
n∆

σ̂H0

)
,

where the expression in the fourth equality comes from Lemma 1 from Kosorok1. We conclude from the
convergence of Zn/σ̂H0

towards a centered Gaussian random variable.
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1.2 Multivariate test
In this section, we present the proofs for the results in Section 2.2 of the main document, for the
multivariate test.

Result 4. For k = 1, 2,

√
n



F̂−1
k (p1)− F−1

k (p1)

fk(F
−1
k (p1))

...

F̂−1
k (pJ)− F−1

k (pJ)

fk(F
−1
k (pJ))


d−→ N (0,ΥFk

) as n → ∞,

where:

(ΥFk
)jl =



(1− pj)
2
∫ F−1

k (pj)

0

dΛk(x)

Hk(x)

µk(fk(F
−1
k (pj)))2

, if j = l

(1− pj)(1− pk)
∫ F−1

k (pj)∧F−1
k (pl)

0

dΛk(x)

Hk(x)

µkfk(F
−1
k (pj))fk(F

−1
k (pl))

, otherwise.

Proof. From Lemma 1 in Kosorok1, we have:
F̂−1
k (p1)− F−1

k (p1)

...

F̂−1
k (pJ)− F−1

k (pJ)

 = Uk + op(1/
√
nk),

where

Uk =



F̂k(F
−1
k (p1))− p1

fk(F
−1
k (p1))

...

F̂k(F
−1
k (pJ))− pJ

fk(F
−1
k (pJ))


·

From Theorem 6.3.1 from Fleming and Harrington2,
√
nkUk converges to a centered multivariate

Gaussian random variable where its variance matrix has entries (j, l) equal to:

(1− pj)(1− pl)
∫ F−1

k (pj)∧F−1
k (pl)

0

dΛk(x)

Hk(x)

fk(F
−1
k (pj))fk(F

−1
k (pl))

·
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The result follows since nk/n → µk as n → ∞.

Result 5. Under H0 : F−1
1 (pj) = F−1

2 (pj), j = 1, ..., J ,

Zn =
√
n


F̂−1
1 (p1)− F̂−1

2 (p1)

...

F̂−1
1 (pJ)− F̂−1

2 (pJ)

 d−→ N (0,Ψ) as n → ∞,

where Ψ = ΥF1
+ΥF2

.
The test statistic, expressed as Tn = ZT

n Ψ
−1Zn, converges in distribution towards a χ2

J as n → ∞
under H0.

Proof. Since the two treatment groups are independent, we have under H0

√
n


F̂−1
1 (p1)− F̂−1

2 (p1)

...

F̂−1
1 (pJ)− F̂−1

2 (pJ)

 =
√
n



F̂−1
1 (p1)− F−1

1 (p1)

f1(F
−1
1 (p1))

...

F̂−1
1 (pJ)− F−1

1 (pJ)

f1(F
−1
1 (pJ))


−

√
n



F̂−1
2 (p1)− F−1

2 (p1)

f2(F
−1
2 (p1))

...

F̂−1
2 (pJ)− F−1

2 (pJ)

f2(F
−1
2 (pJ))


+ op(1/

√
n).

From Result 4,

Zn =
√
n


F̂−1
1 (p1)− F̂−1

2 (p1)

...

F̂−1
1 (pJ)− F̂−1

2 (pJ)

 d−→ N (0,Ψ) ,

where Ψ = ΥF1
+ΥF2

. From these results, we conclude that, under H0, Tn
d−→ χ2

J as n → ∞.

Result 6. Under H1 : F−1
1 (pj)− F−1

2 (pj) = ∆j , j = 1, ..., J , Tn is asymptotically equivalent to
χ2
J(Ψ

−1/2ξ), an uncentered chi-squared distribution with J degrees of freedom and mean Ψ−1/2ξ, with

ξ =
√
n


∆1

...

∆J

 ·

We then have the following asymptotic formula for the power of the test of level α:

1− β = Fχ2
J (Ψ

−1/2ξ)(qJ,1−α),

denoting as Fχ2
J (Ψ

−1/2ξ) the cumulative distribution function of this chi-squared distribution and qJ,1−α

as the quantile of order 1− α of the chi-squared distribution with J degrees of freedom.
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Proof. We denote:

Yn =
√
n


F̂−1
1 (p1)− F−1

1 (p1)

...

F̂−1
1 (pJ)− F−1

1 (pJ)

−
√
n


F̂−1
2 (p1)− F−1

2 (p1)

...

F̂−1
2 (pJ)− F−1

2 (pJ)

 ·

Under H1, we write:
Zn = Yn + ξ.

From Lemma 1 in Kosorok1, we have:

Yn =
√
n



F̂1(F
−1
1 (p1))− p1

f1(F
−1
1 (p1))

...

F̂1(F
−1
1 (pJ))− pJ

f1(F
−1
1 (pJ))


−
√
n



F̂2(F
−1
2 (p1))− p1

f2(F
−1
2 (p1))

...

F̂2(F
−1
2 (pJ))− pJ

f2(F
−1
2 (pJ))


+ op(1/

√
n).

The first and second term on the right-hand side of this equation converge in distribution respectively to
N (0,ΥF1) and N (0,ΥF2) as n → ∞. Therefore,

Yn
d−→ N (0,Ψ), as n → ∞,

and Zn is asymptotically equivalent to a N (ξ,Ψ). From the consistency of Ψ̂, ZT
n Ψ̂

−1Zn is
asymptotically equivalent to χ2

J(Ψ
−1/2ξ). We conclude from the definition of the power,

1− β = PH1
(Tn > qJ,1−α)

≈ Fχ2
J (Ψ

−1/2ξ)(qJ,1−α).

2 Details on the estimation of the density
In the main document, two different methods are proposed for the estimation of fk(F−1

k (p)), k = 1, 2:
a resampling procedure based on the method from Lin et al.3 and a kernel density estimator. The first
method only estimates the densities at one point, the quantile F−1

k (p), while the second method estimates
the whole function fk(t) from which the estimator at the quantile is obtained by setting t = F−1

k (p). In
Section 2.1 the resampling procedure is explained, while details for the kernel density estimator are
provided in Section 2.2.

2.1 Resampling procedure
We propose a resampling procedure that allows to estimate f(F−1(p)) the density at a given quantile,
for a given probability 0 < p < 1. We present a method inspired by Lin et al.3 in order to perform such
task in a resampling procedure. We require the densities at the quantiles to be strictly positive, and we
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denote as F̂ the consistent estimator for F obtained from the usual Kaplan-Meier estimation. Taking this
estimator we obtain F̂−1(p) the estimators of the inverse distribution at p. Then we propose the following
resampling procedure:

1. Generate B realizations of the Gaussian ε ∼ N (0, σ2), denoted by ε1, ..., εB

2. Calculate
√
n

(
F̂

(
F̂−1(p) +

εb√
n

)
− p

)
, b = 1, ..., B and denote them as yb, then the

least squares estimate of f(F−1(p)) is Â = (x′x)−1x′Y , where x = (ε1, ..., εB)
T and Y =

(y1, ..., yB)
T

We advocate that the variance of the Gaussian variables must be carefully chosen as it may impact the
quality of estimation of the density. To illustrate this phenomenon, we study the behavior of the Mean
Squared Error (MSE) when the sample size and σ change. Based on those results, we propose a grid-
search method to automatically choose an optimal value for σ.

In Figure 1, we illustrate the MSE for a range of values of σ when estimating the median of an
exponential distribution with rate 1.5. The true value of the density at the median is 0.75 and censoring
follows an exponential distribution with rate 0.12. We generate B = 10000 Gaussians and we replicate
the code 100 times.

We notice that, for small sample sizes, the value of σ2 plays an important role in the value of the
MSE. Indeed, as one increases sample size, the region where MSE is minimized becomes broader, which
allows for greater flexibility when choosing the variance within a wider interval of values where the MSE
is small. Consequently, variance selection is particularly important when working with small sample
sizes. For all sample sizes, we observe that the MSE decreases until it reaches a plateau, where it remains
low over a range of σ values, before increasing again. Our goal is then to select a value of σ that lays in
such interval, which grows broader as sample size increases.

To identify this plateau, we estimate the density at the quantile over a grid of σ values and examine the
results in small neighborhoods. We look for an interval where the estimated density shows the smallest
local variation within its region, and select σ a value within this interval.

This procedure is illustrated for the estimation of the median of the exponential with rate 1.5, with
exponential censoring with rate 0.12. We consider σ values ranging from 0 to 10 in increments of 0.05
and examine smaller neighborhoods, each containing 20 values for the estimated density at the median.

In Figure 2 we illustrate the estimation of the density at the median for each σ. The vertical line
represents the selected σ by our procedure, which is equal to 3.65. We obtain an estimation of the density
at the median equal to 0.72. In Figure 3, we illustrate the absolute difference between the estimated
density at the median and the true value 0.75, for each σ. We see that our procedure selects a value of σ
that lays inside the region where this difference is minimized.

Our method has been illustrated in the exponential framework, but the same reasoning can be applied
to other distributions. The procedure has been implemented in R and all code is available in order to
perform the variance selection automatically using the proposed grid-search algorithm, as well as the
density estimation at a given quantile using the selected variance.
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(a) n = 50 (b) n = 200

(c) n = 1000

Figure 1. Comparison of MSE with respect to σ for different sample sizes.
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Figure 2. Example of density estimation at the median with respect to σ.

Figure 3. Absolute difference between the true density at median and its estimation by the proposed method,
with respect to σ.
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2.2 Kernel density estimation
In the presence of censoring, a typical kernel estimator of the density can be constructed by estimating the
censoring distribution from the Kaplan-Meier estimator. In Földes et al.4, Diehl and Stute5 the following
estimator has been proposed:

f̂h(t) =
1

nh

n∑
i=1

δi

Ŝcens(Ti)
K

(
Ti − t

h

)
,

where Ŝcens is the Kaplan-Meier estimator of the censoring survival function and K a kernel satisfying
standard conditions. In order to compute this estimator, the kernel and the bandwidth must be chosen. In
our implementation, a Gaussian kernel was taken and the bandwidth was obtained from cross-validation.
For the choice of the bandwidth, the goal of the method is to try to minimize the Integrated Squared Error
(ISE), defined, for k = 1, 2, as:

ISE(f̂h) =
∫ (

f̂h(t)− fk(t)
)2

dt

=

∫
f̂2
h(t)dt− 2

∫
f̂h(t)fk(t)dt+

∫
f2
k (t)dt.

In this expression the last term does not depend on h and can be omitted. On the other hand, the term∫
fh(t)fk(t)dt is estimated by:

Ĵ(h) =
1

n(n− 1)h

∑
i ̸=j

K

(
Ti − Tj

h

)
δikδjk

Ŝcens(Ti)Ŝcens(Tj)
·

Using the consistency of the Kaplan-Meier estimator, it can easily be shown that this estimator converges
in probability, as n tends to infinity, towards

∫
f̂h(t)fk(t)dt (see Marron and Padgett6). In conclusion,

our cross-validated estimator is defined as the Gaussian kernel estimator with bandwidth chosen as the
minimizer of

∫
f̂2
h(t)dt− 2Ĵ(h), that is:

ĥ = argmin
h


∫

f̂2
h(t)dt−

2

n(n− 1)h

∑
i̸=j

K

(
Ti − Tj

h

)
δikδjk

Ŝcens(Ti)Ŝcens(Tj)

 ·

We refer the reader to Marron and Padgett6 for more details about the cross-validation bandwidth selector
and theoretical results regarding its validity.
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