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Abstract

We investigate finding a map g within a function class G that minimises an Optimal Transport
(OT) cost between a target measure v and the image by g of a source measure p. This is relevant
when an OT map from p to v does not exist or does not satisfy the desired constraints of G.
We address existence and uniqueness for generic subclasses of L-Lipschitz functions, including
gradients of (strongly) convex functions and typical Neural Networks. We explore a variant that
approaches a transport plan, showing equivalence to a map problem in some cases. For the squared
Euclidean cost, we propose alternating minimisation over a transport plan 7 and map g, with the
optimisation over g being the L? projection on G of the barycentric mapping 7. In dimension
one, this global problem equates the L? projection of 7* onto G for an OT plan 7* between p and
v, but this does not extend to higher dimensions. We introduce a simple kernel method to find g
within a Reproducing Kernel Hilbert Space in the discrete case. We present numerical methods
for L-Lipschitz gradients of /-strongly convex potentials, and study the convergence of Stochastic
Gradient Descent methods for Neural Networks. We finish with an illustration on colour transfer,
applying learned maps on new images, and showcasing outlier robustness.
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1 Introduction

Let p and v denote two probability distributions on two (potentially different) measurable spaces X
and ). Many problems in applied fields can be written under the form

inf D(giu,v), (1)

where # denotes the push-forward operation!, D is a non-negative discrepancy (such as a distance
metric or a ¢-divergence) measuring the similarity between g#pu and v, and G is a set of acceptable
functions from X to ). Under appropriate assumptions on D, this problem can be interpreted as a
projection of v on the set G#u := {g#u,g9 € G} for the discrepancy D. In this paper, we focus on
cases where v cannot be written as g#pu for g € G.2

In the highly popular field of generative modelling, the target distribution is usually an empirical
1 xm

distribution composed of m samples, v = -3 7" d;,, p is an easy-to-sample latent distribution
(for instance a Gaussian distribution), and the set G = {gp, 6 € ©} generally denotes functions
represented by a specific neural network architecture. The goal is to find the parameter 6 such that
o = go#u fits v as well as possible. Models taking this form are often called push-forward generative
models [15], and include Variational Auto-Encoders (VAEs) [31], Generative Adversarial Networks
(GANs) [28], Normalising flows [13] and even Diffusion Models [19], which can be reinterpreted as
indirect push-forward generative models [15]. In these works, the discrepancy D is often chosen as the
Kullback-Leibler divergence, as it is the case for traditional GANs and VAEs, or as the Wasserstein
distance, like in Wasserstein-GANs [5]. The discrepancy D(gp#u, v) is minimised in 6, for instance
by using sophisticated versions of stochastic gradient descent. In such problems, it is clear that ge#u
does not target exactly v, since it would mean that the model has only learned to reproduce existing
samples, and not to create new ones. This is possible because the expressivity of neural networks is
limited, but also because the training steps usually impose regularity properties on gg and constrain
its Lipschitz constant in order to increase its robustness [55, 25] or stabilise its training [36]. It is
therefore natural to wonder to what extent the optimisation of such discrepancies with regularity
constraints on the set of functions G is well-posed, depending on the choice of D, and what this

means in practice.

In an Euclidean setting, another example of Eq. (1) appears when we need to compare two distri-
butions 1 and v potentially living in spaces of different dimensions, or when invariance to geometric
transformations is required (for problems such as shape matching or word embedding). In such
cases, it is usual to choose G as a well chosen set of linear or affine embeddings (such as matrices
in the Stiefel manifold if the space dimension is different between X and ))). For instance, this idea
underpins several sets of works introducing global invariances in optimal transport [2, 40].

In both of the previous examples, G is parametrised by a set © of parameters which is potentially
extremely large (for neural networks) but of finite dimension. Alternatively, the set of functions G
can be much more complex and characterised by regularity or convexity assumptions, the problem
becoming non-parametric. This is typically the case in the field of optimal transport [54, 17]. Given
1 and v probability measures on respective Polish spaces X and ), Monge’s Optimal Transport
consists in finding a Transport map 7" such that T#u = v and which minimises a given displacement

!The image measure g#u is defined as the law of g(X) for X a random variable of law p, or more abstractly by
g#1(B) = u(g~'(B)) for any Borel set B C ).
2Obviously, if v belongs to G#pu, the problem is trivial and the infimum in Eq. (3) is 0.
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cost. From a theoretical standpoint, the existence of (unconstrained) Monge maps has been widely
studied [11, 27, 42], under regularity assumption for g. When there is no map 7T such that T#u = v
(for example, if p is discrete and if v is not), or when the map solution does not meet the regularity
requirements for some given practical application, it makes sense instead to solve problems of the
form of Eq. (1), with D a Wasserstein distance and G a set of functions with acceptable regularity.
For instance, as studied in [37], G can be composed of functions g = V¢ with ¢ (-strongly-convex
with an L-Lipschitz gradient. For cases where p is discrete, this formulation also overcomes a classic
shortcoming of numerical optimal transport approaches, which usually compute solutions which are
only defined on the support of u. If a machine learning algorithm requires the computation of the
transport of new inputs, the map must be either recomputed, or an approximation of the previous
map must be defined outside of the support of pu. Several solutions have been proposed in the
literature to solve this problem [16, 7, 32, 37, 41, 48, 38], and some of them [32, 37] consists in
solving Eq. (1) with an appropriate set of functions G. Consistency and asymptotic properties of
such estimators are also the subject of several of these works [16, 32, 29].

For the sake of legibility and to avoid excessive technicality, we focus on the case where the target
space is R?, however it is possible to extend our considerations to a target space ) which is a Polish
space verifying the Heine-Borel property (i.e. that any bounded and closed set is a compact set),
which in particular allows the case where ) is a connected and complete Riemannian manifold (in
which case the Heine-Borel property follows from the Hopf-Rinow Theorem, see [19] Theorem 2.8).
Similarly, the problem naturally extends to the case where the codomain of the maps g and the target
measure v are different spaces ), ).

OT discrepancies. In this paper, we focus on problems of the form Eq. (1) when D is chosen as an
optimal transport discrepancy for a general ground cost c. We recall that if X and ) are two Polish
spaces, the Optimal Transport cost between two measures 11 € P(X) and vo € P()) for a ground
cost function ¢ : X x Y — Ry is defined by the following optimisation problem

T = win [ c(ayin(z) 2
m€ll(vi,v2) Jxxy

where II(v1, 1) is the set of probability measures on X x ) whose first marginal is v; and second

marginal is 152, Given this method of quantifying the discrepancy between g#p and v, Eq. (1)

becomes

gigg Te(g#m,v). (3)

In the case where the source measure is discrete and the target measure is absolutely continuous, the
Optimal Transport problem in Eq. (3) is said to be semi-discrete, and has a slightly more explicit
expression (see [34] for a course on the matter). If we suppose in addition that c(z,y) = ||z — y||3
and that the source measure weights are uniform (a; = 1/n), then Eq. (3) is a constrained version
the Optimal Uniform Quantization problem studied thoroughly in [33].

Existence of minimisers. An important question regarding this optimisation problem concerns
the existence of minimisers, depending on the ground cost ¢ and the set of functions G. While
numerous works in the literature have focused on the convergence of optimisation algorithms (such as
stochastic gradient descent) to critical points for this kind of problem [24], the existence of minimisers
has surprisingly been little studied. We derive in Theorems 2.3 and 2.4 generic conditions to ensure
existence of such minimisers in GG, and show counter-examples when these conditions are not met. We
also show that these conditions are satisfied for two classes of functions, namely classes of L-Lipschitz
functions which can be written as gradient of [-strongly convex functions (recovering a result shown
in [37] as a particular case of Theorem 2.4), and classes of neural networks with Lipschitz activation

3The fact that the minimum is attained is a consequence of the direct method of calculus of variations (see [17],
Theorem 1.7). The value of T¢(v1,v2) may be 400, but a sufficient condition for 7c(v1,v2) < 400 ([54], Remark 5.14)
is that

/ c(z,y)dr (z)dra(y) < +oo.
X XY
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functions. We also discuss uniqueness of the solutions, which is usually not satisfied, and remains a
difficult question without strong assumptions on the set of functions G.

Approximating a coupling. In the field of optimal transport, a particular setting where Eq. (3)
is interesting is when we have access to a non deterministic coupling 7 solution of a regularised
version of a optimal transport between two probability measures 1 and v. For instance, the entropic
optimal transport [10], or the mixture Wasserstein formulation [18] both yield optimal plans 7 which
cannot be trivially written as optimal maps between i and v. For some applications, it can be
interesting to approximate m by another transport plan supported by the graph of a function with
possible additional regularity assumptions. This can be done by approximating = by (I, g)#u, with
specific regularity properties on g, which is a particular case of Eq. (3), replacing v by 7 and G by
the set H := {(I,g),g9 € G}. In this specific setting, we show in Section 2.7 under which conditions
on the ground cost ¢ the solutions of this problem between plans are equivalent to solutions of the
original Eq. (3) when 7 € II(u,v). Numerical approaches seeking maps that approach barycentric
projections have been studied in [18, 38].

Alternate minimisation. Under appropriate assumptions, Eq. (3) can be rewritten as a minimi-
sation problem over 7 € II(u,v) and g € G:

min min /X > c(g(z),y)dn(z,y). (4)
This naturally leads to consider Eq. (3) as an alternate minimisation problem, that we study in Sec-
tion 3 in the Euclidean case when c(z,y) = ||z —y||3. More precisely, we show that Eq. (3) is strongly
linked to the barycentric projection problem: when 7 is fixed, the solution g minimising Eq. (4) can
be reinterpreted as the L?-projection of the barycentric projection of m on the set G. In the one-
dimensional case, when G is a subclass of increasing functions, this yields an explicit solution to the
problem (as it was shown in [37] in a more specific case), and we show that this explicit solution does
not hold in dimension larger than 1 by presenting a counter-example.

Outline of the paper. In this work, we address problem Eq. (3) for large classes of functions G.
In Section 2, we define the problem and establish general conditions for the existence of solutions,
exploring examples involving gradients of convex functions and neural networks. Section 3 examines
the link between Eq. (3) and a constrained barycentric projection problem, demonstrating an explicit
solution in one dimension and providing a counterexample in higher dimension. Section 4 focuses on
practical numerical methods to solve the optimisation problems for Lipschitz gradients of strongly
convex potentials, kernel methods and Neural Networks. We conclude with an illustration on colour
transfer.

2 A Constrained Approximate Transport Map Problem

2.1 Problem Definition

We consider (X, dy) a locally compact Polish space, and u € P(X) a probability measure on X'. Our
objective is to find a map ¢ : X — R? verifying the constraint ¢ € G for some class of functions
G C (RH?Y, such that the image measure g#u is "close" to a fixed probability measure v € P(R?),
in the sense of Eq. (3).

Applying the definition of 7. directly (Eq. (2)) yields the following expression for Eq. (3):

inf min c(x,y)dm(x,y). 5
9€G mell(g#p,v) /Xde (. y)dm(z.y) ©)
The optimisation variable g acts on the set of constraints of the Optimal Transport problem, however
thanks to a well-known "change of variables" result ([20] Lemmas 1 and 2 for a reference), we will be
able to reformulate Eq. (5). In the following, we shall denote by II*(v1, v2) the set of minimisers of
the optimal transport problem Eq. (2) between two measures v; and vs.
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Lemma 2.1. (/20], Lemmas 2.6 and 2.7) Let X,Y, X",y be Polish spaces. Let g : X — X' and
h:Y — Y two measurable maps and let (p,v) € P(X) x P(Y). Consider two costs c: X xY — R
and ¢ : X' x Y — R such that V(z,y) € X x Y, c(z,y) = (g(x), h(y)).

o For any v € U(g#p, h#v), there exists v € I (u,v) such that v = (g, h)#~.
o We have II% (g# 1, h#v) = (g9, h)#IL: (1, v).

Using Lemma 2.1, the energy of the map problem Eq. (3) can be written as follows:

Tlotn) = ot [ clota)pin(ay). )

mnell(p,v)

In our study of the map problem Eq. (3), we will consider classes G that are a subset of the L-Lipschitz
functions. The first reason is that with unbounded Lipschitz constants, the problem may not have a
solution, as we shall see in Section 2.5. Moreover, there are multiple practical considerations that lead
to choosing functions with an upper-bounded Lipschitz constant. To begin with, numerous practical
models enforce this condition, such as Wasserstein GANs [5], and diffusion models [19] (see also
[15] Appendix S2), furthermore most neural networks are Lipschitz (since typical non-linearities are
chosen as Lipschitz), and the control of the Lipschitz constant is often used as a regularisation method
[55]. In Fig. 1, we illustrate a solution of the map problem using numerical methods introduced in
Section 4.2, for two different values of L (the Lipschitz constant of the maps g).

OT Plan
g1 L=2
g, L=8
u
v
g1#u L=2
g2#u L=8
;e 'ee 4 "4 v Aan . a ] -.-f
LA & _ s ) L ama 4 a ]
0 2 4 6 8

(a) Tlustration of the source, target and image
measures using their samples and (approximate)

densities.
(b) Ilustration of map solutions and comparison

with the (discontinuous) Optimal Transport cou-
pling.

Figure 1: Tllustration of solutions of maps problems (Eq. (3)) on a toy dataset with a source measure
1 =U([—1,1]) and a target measure v = sU([2,4]) + 3U([6,8]). The two solutions are respectively
L =2 and L = 8 Lipschitz.

2.2 Existence of a Solution

To formulate an existence result, we shall apply the direct method of calculus of variations, which
requires a technical condition on the stability of the class of functions G with respect to certain
limits. To formulate this condition, we will introduce the notion of closedness of a class of continuous
functions with respect to the compact-open topology. By [30] Chapter 7 Theorem 11, in our setting,
this topology is equivalent to the topology of uniform convergence on compact sets, which allows us
to formulate Definition 2.2 in terms of local uniform convergence.
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Definition 2.2. We say that a set of functions G C (R%)?* is closed for the compact-open
topology if there exists a sequence (KCy,) of compact sets of X verifying UnKCp, = X such that:

for any sequence (gn)nen € GN such that for all m, (gnlx,, )nen converges uniformly towards a
function gi, : Ky — R?, there exists g € G such that g|x,, = gi,, for all m.

One can understand this condition as a form of "local uniform closedness" of the class G.

Theorem 2.3. Let ¢ : R x R* — Ry be a lower semi-continuous cost function, u € P(X) be a
probability measure on a locally compact Polish space (X,dx), and v € P(Rd). Assume that

i) (Coercive cost) There exists n: Ry — Ry non-decreasing and such that n(t) PR +00,
o0

and o € R such that Vy,y' € RY, c(y,y') > a+n(lly — ¥'|2) and [ (|| - [|2)dv < +oo;

it) (Lipschitzness and Closedness of G) G is a subset of the space of L-Lipschitz functions
from X to R?, that is closed for the compact-open topology (see Definition 2.2);

iii) (Problem finiteness) There exists g € G such that To(g#u,v) < +o00.

Then the problem argmin T.(g#u,v) has a solution.
geG

Proof. — Step 1: Defining a minimising sequence.

We introduce the notation J(g) := T.(g#u,v) for convenience, and J* the problem value, which is
finite by Assumption iii). Consider a minimising sequence (g, )nen € G such that

YneN, J(g,) <J " +27"

— Step 2: Bounding gy,.

First, we fix n € N, and take a € X in the support of © and r > 0, then set A := By, (a,r) the ball
of centre a and radius r for the distance dy, so that p(A) > 0. The transport problem has a solution
since ¢ is lower semi-continuous ([17] Theorem 1.7). We introduce 7}, € II(u, v) optimal for the OT
cost Te(gn#u,v). We lower-bound:

J(gn) Z/Ade c(gn (), y)dmy (2, y) Z/A L Mlgn (@) = yllz)dmy (2, y) + an(A).

xR

To separate variables, we will use an elementary inequality: let z,w € R? the triangle inequal-
ity yields [|z]|2 < 2max(||lw — z]|2, ||w]]2), applying the non-decreasing and non-negative function n
provides 7)([|z[|2/2) < max(n([lw — z[|2), n([wll2)) < n(l|w = 2[l2) + n([[w[|2). Finally, we have

Yw,z € RY, n(l|lw - z]l2) > n(lz]2/2) = n(lwl2). (7)

By assumption, we remind that [7(]| - [|2)dv < 400, and resume lower-bounding using Eq. (7) with
w:=y and z := gp(z):

9o = [ (M50 dute) — ) [l Jo)av + anca),
Let z € A, we apply again Eq. (7) with w := (gn(a) — gn(2))/2 and z := g,(a)/2:

1(Ilgn(2)l12/2) = n(llgn(a)ll2/4) = n(llgn(a) = gn(2)ll2/2) = n(llgn(a)ll2/4) — n(Lr/2),

where the second inequality comes from the fact that g, is L-Lipschitz, dy(x,a) < r and that 7 is
non-decreasing. Gathering our inequalities leads to the following lower-bound:

T 12 J(ga) = n(A) (nllgn@)la/) ~ n(Lr/2) = [ a(]- J2)dv +a).
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This implies that there exists M > 0 independent of n such that ||g,(a)|2 < M. (Since by coercivity
of 7, the right-hand side of the equation above would tend to 400 if ||gy(a)||2 i +00).
n—r-—+0o

— Step 3: Applying Arzela-Ascoli’s Theorem.

For n € N, we use the upper-bound from Step 2 and the fact that each g, is L-Lipschitz:
Ve € X, ||gn(2)|l2 < M + Ldx(z,a),

which shows that Vo € X, {g,(z), n € N} has compact closure in R?. The sequence (g,) is equi-
Lipschitz and thus equi-continuous, and is closed for the compact-open topology (Definition 2.2) by
assumption. By Arzela-Ascoli’s theorem (as stated in [30], Chapter 7, Theorem 17), we can choose
B : N — N an extraction such that gg, m g locally uniformly on X, for a certain function

g €aq.
— Step 4: Showing that the limit ¢ is optimal.

First, the sequence (gg(,)##) converges weakly towards the probability measure g#fu: take a con-

tinuous and compactly supported test function ¢ : R — R, the dominated convergence theorem
shows that

/ b0 gamydn ——— / 60 gdu,
X X

n—>-+4o0o

where convergence of the integrands is ensured by the point-wise convergence of (gﬂ(n)), and domi-
nation by ||¢|| suffices. Since ¢ is lower semi-continuous, the OT cost is itself lower semi-continuous
for the weak convergence of measures (see [3] Theorem 2.6), we obtain the following inequality:

o N
lminf J(gs0m)) 2 J(9),

where J was introduced in Step 1, where we also chose g,, such as J(g,) < J*+427", thus we conclude
J* > J(g), hence g is optimal.

O]

Theorem 2.3 can be extended to the case where the regularity of the functions of G is only assumed
on a partition of X. Note that to avoid pathological ambiguity and unnecessary complications, we
will consider partitions whose borders have no mass for u, such that the problem objective can be
split according to the partition.

Theorem 2.4. Let ¢ : R?xR? — R, be a continuous cost function, a probability measure u € P(X)
on a locally compact Polish space (X,dx), and v € P(R?). Consider (Ei)pi,x] @ partition of X such
that for every i € [1,K], p(0E;) = 0. Under the same conditions as Theorem 2.3, and replacing
assumption ii) by

ii’) The class of functions G C (RHY is of the form
G= {93X—>Rd | Vie [1,K], glg, =9, 9 EGi},

where for every i € [1, K], the set of functions G; C (Rd)éi is a subset of the space of L-
Lipschitz functions from E; to R?, that is closed for the compact-open topology (see Defini-
tion 2.2),

then the problem argmin T.(g#u,v) has a solution.
geG

Proof. We shall follow closely the proof of Theorem 2.3, and point out the technical differences. We
introduce a minimising sequence exactly identically to Step 1. The computations from Step 2 can be
done verbatim, choosing instead A; C E;, and concluding ||gy(a;)||2 < M; for a fixed a; € A;.
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Step 3 is then done separately on each E‘i, yielding extractions ((;) such that each 98;(n) CONVErges

locally uniformly on EZ towards a function g; € G;. Considering the extraction 8 := g1 0---0 [k, we
have for all 7 € [1, K] the uniform convergence of (gg(,)) towards g € G on all compact sets of E;.

Finally, Step 4 is done likewise to Theorem 2.3, with the technicality that since p(0FE;) = 0, the

pointwise convergence of (gg(,)) towards g at each point of E; suffices to show that 98n)(2) ———
n—> +00

g(x) for p-almost-every x € X', which yields the convergence in law gg,,)#x % g#u. The rest
n—--—+oo

follows verbatim. O

In Remarks 2.5 and 2.6, we present some natural extensions of Theorems 2.3 and 2.4, which we kept
separate for legibility.

Remark 2.5. The existence results of Theorems 2.3 and 2.4 also hold if the objective functional is
changed into a reqularised version

J(g) = Te(g#m,v) + R(g),

where R : G — Ry U {400} is lower semi-continuous with respect to uniform local convergence.
One also has to assume that there still exists g € G such that the new cost J is finite. The proofs
can be written almost identically: in Step 1, it suffices to lower-bound R(gn) > 0, and in Step 4, one
obtains liminf J(gg(n)) > J(g) thanks to the lower semi-continuity of R.

Remark 2.6. Condition i) on ¢ can be generalised to the case where the target space R is instead
a Polish space Y verifying the Heine-Borel property (i.e. all closed and bounded sets are compact),
in which case Condition i) can be replaced with the condition that c(-,y9) be proper, which is to
say that its preimage by any compact set S C Ry is a compact set of Y. This property would be
used in Step 2 to show that g,(a) € C for some compact set C C Y independent of n, then in
Step 3, we would use the Lipschitz property of g, and the triangle inequality on dy to show that
Vo € K, gn(x) € By(yo, Lt + dy(yo,C)), for a compact set K C X of diameter r and yo € Y. This
would show that for each x € K, the set {gn(x)}nen is pre-compact in Y, and allow one to apply
Arzela-Ascoli likewise.

A natural context for Optimal Transport is the case where the ground cost is of the from c(z,y) =
|z — y||P for some norm | - || on R? and p > 1. In Proposition 2.7, we show that such costs verify the
assumptions to our existence theorems.

Proposition 2.7. Cost functions of the form c(x,y) := || — y||P, where p > 0 and | - || is a norm
on RY satisfy Assumption i) of Theorems 2.3 and 2.4, as long as v € P,(R?).

Proof. Take n :=t —— (Kt)P, where K > 0 is provided by the norm equivalence inequality || - || >
K- [l O
2.3 Function Class Example: Gradients of Convex Functions

An interesting class of functions G to optimise over is the set of L-Lipschitz functions that are
gradients of (¢-strongly) convex functions. Indeed, this can be seen as a regularising assumption, and

was studied in [37] for the cost c(z,y) = ||z — y||3. We shall see in Proposition 2.9 that classes of
such functions on arc-connected partitions verify the conditions of our existence result Theorem 2.4.
In particular, [37] Definition 1 (which states existence, with a simplified proof due to lack of space)

is a consequence of Theorem 2.4. Before this result, we will present a technical lemma on arc-
connectedness. In this paper, we will say that a set A C R? is arc-connected if any pair of points of
A can be joined by a Lipschitz curve contained in A.

Lemma 2.8. Let O be an arc-connected open set of R?. There exists (Cy)ren a sequence of arc-

connected compact sets such that Vk € N, Cy C Cry1 and U Cr=0.
keN
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Proof. Consider the collection (B(q,74)),conge Where for each ¢ € ON Q?, we take r, > 0 such that
B(q,r,) C O. Using a bijection between N and O NQ¢, we can introduce sequences (g;) € (ONQHN
and (ry) € (0, 4+00)" such that the sequence of the Ay := B(qy, ) enumerates the previous collection.
The sequence (Ay) is made of compact arc-connected sets and verifies O = U Aj. We can now defined
recursively the sequence (Cy) by Cy := Ap and Ciyq = Cx U Ag11 U wg([0,1]), where for £ € N,
wy, : [0,1] — O is a Lipschitz curve between g and g1 contained in O (which exists by assumption
on O). By induction, the sequence (C}) verifies the desired properties. O

We now have the technical tools to prove that L-Lipschitz functions that are gradients of (¢-strongly)
convex functions verifies the local convergence stability assumption of Theorem 2.4 on partitions of
R%.

Proposition 2.9. Consider X := R, and a partition £ := (Ei)i,x], where each E; is arc-connected.
Let 0 < ¢ < L, the set of functions

Fere = {g ‘R4 — RY | Vi € [1, K], g\Ei L — Lipschitz; g|Ei = Vi, pi € Cl(Ei,R), p; £ — strongly conuem}
verifies Assumption ii’) of Theorem 2.4.

Proof. Let i € [1, K], and define for notational convenience U := E;. We want to show that the set
of functions

G := {g :U — R? L — Lipschitz | g = Vi, ¢ € CH(U,R), ¢ £ — strongly convex}

is closed for the compact-open topology (Definition 2.2). By Lemma 2.8, since U is open and arc-
connected, we can choose an increasing sequence of arc-connected compact sets K,,, C U such that
UnCr = U. We fix a € Ky.

Take a sequence (gn)nen € GY such that for each m € N, gk, converges uniformly to some
function h,, € C°(KC,,, R?). We will show that there exists g € G that coincides with h,, on each C,,.
Regarding the Lipschitz constraint, by point-wise convergence, each function h,, is L-Lipschitz.

For any n € N, since g, € G, we can introduce an {-strongly convex function ¢, € C!'(U,R) such
that g, = V. Since ¢, can be chosen up to an additive constant, we can assume ¢, (a) = 0. We
study the point-wise convergence of (¢,) on K, for m € N fixed, so we fix z € Kp,. Since K, is
arc-connected, we can choose w : [0,1] — K, a Lipschitz curve such that w(0) = a and w(1) = =.
Noticing that for almost-every t € [0, 1], %gpn(w(t)) = (Vo (w(t)),w(t)) and using ¢n,(a) = 0, we
write (by absolute continuity of ¢, o w):

1
son(w)z/o (Veon(w(t)),w(t))dt ——— [ (hm(w(t)), w(t))dt =: thm(2),

n—>-+00 0
where the convergence is obtained by the dominated convergence theorem.

Our objective is now to prove that v, is C'-smooth on I&m, and that V,,, = h,. Let x € l&m, veR?
and 0 > 0 such that Vt € [-4,0], x + tv € K. Forn € Nand t € [—9,6], let fn(t) :== pn(z + tv).
We have shown that the sequence (f,) converges pointwise to f :=t — ¢, (z + tv). Furthermore,
by convergence of (g,), the derivative sequence f, =t — (Vi (z + tv),v) converges uniformly
on [—6,0] to t — (hm(x + tv),v). A standard calculus theorem then shows that f is differentiable
on (—6,0), with f'(t) = %(hm(x + tv),v). In particular, by setting ¢t = 0 we have shown that the
directional derivative D, (x) exists and has the value (h,(z),v). Since h,, is continuous (we saw
that it is Lipschitz), this shows that 1, is of class C', with V), = g, on K.

For z € U, letting m := min{m € N : z € K,,}, we define ¢(z) := ¢, (z), which is well-defined
since © € K. For m < m/, since K, C K,r, we have ¥,/|kc,, = ¥m, as a consequence, for any
m € N, ¢k, = ¥, without ambiguity. The previous result implies in particular that 1 is of class
C! on each l&m, and thus everywhere on . We define g : if — R? similarly, with the same property
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9lk,, = hm. With this construction, on each l&m, one has g = g, = Vi, = Vo, As a result, we
have g = V¢ on all of Y. Since each gy, is L-Lipschitz, it follows that ¢ is L-Lipschitz on U.

To see that g € G, it only remains to show that v is £-strongly convex, which is a consequence of the
fact that it is everywhere a point-wise limit of a 1,,,, which is itself /-strongly convex. O

2.4 Function Class Example: Neural Networks

Another natural idea is to consider classes GG of parametrised functions, in particular Neural Networks
(NNs) with Lipschitz activation functions. We will consider a relatively general expression for NNs
borrowed from [50]. We consider a class Gy of functions gy = hyn (0, -) : R¥ — R? for a parameter
vector 6 € ©, where © C RP is a compact set, and where hy is the N-th layer of a recursive NN
structure defined by

RP x RF  — Rdn

0,z) — apn (”z:l Ani(0)hi(0,z) + bn9> ’ -
8

=0

ho(0,2) =z, Vne€[l,N], h, =

NeN, dy=k, dy=d, Vn € [1,N], d, € N*,
ap : R — R Lipschitz, b, € L(RP,R%), Vi € [0,n — 1], A, € L(RP,RIn*di),

where L£(A, B) is the space of linear maps from A to B. The terms A,; and b, correspond to
the weights matrices and biases respectively, and we allow the use of the entire parameter vector
0 € © C RP at each layer for generality. The summation over the previous layers allows the inclusion
of “skip-connections" in the architecture. Thanks to the assumption that the parameters lie in
a compact set, we will show that the class Gyn verifies the conditions of our existence theorem
Theorem 2.3.

Proposition 2.10. Let © C RP be a compact set and Gxn the class of functions RP — R? of
the form g9 = hn(6,-), with @ € © and hy as in Eq. (8). Then Gnn verifies Assumption i) of
Theorem 2.3.

Proof. An immediate induction over the layers shows that for g9 € Gnn, there exists a constant
L > 0 independent of @ such that gy is L-Lipschitz on R”.

Concerning closedness for the compact-open topology (Definition 2.2), we will show the following
stronger property: if (g,m) € (Gnn)Y converges pointwise towards a function f : R¥ — R? then
there exists § € © such that f = gg. For m € N, we can write g,, = gu,, for u,, € ©. Since
the sequence (uy,) lies in the compact set ©, there exists a converging subsequence (uq(,,)) which
converges towards 6 € ©. Let 2 € R¥, we have the convergence g,,, (r) — f(z). By induction over
the layers, the function v — g,(z) is continuous, thus gy, (¥) — go(z). By uniqueness of the

limit, f(z) = gg(x), and since = € R¥ was chosen arbitrarily, we conclude f € G. O

Remark 2.11. For simplicity, we presented NNs taking x € R* as input, yet the theory holds if X is
a locally compact Polish space, just as in Theorem 2.3. For instance, one could take a Riemannian
manifold.

2.5 On the Necessity of the Lipschitz Constraint for Existence

Beyond the theoretical usefulness of the constraint that g be L-Lipschitz, this constraint may add
substantial difficulty to the numerical implementation (see Section 4). As a result, one could consider
the map problem Eq. (3) without the Lipschitz assumption on G. Unfortunately, this variant has
no solution in general. We illustrate this in the light of the class of functions F¢ 1 ¢ introduced in
Proposition 2.9, in the 1D case and consider G the cone of continuous non-decreasing functions,
yielding the problem:

argmin  Wi(g#p, v), (9)
g€CO(R), non-decreasing

10
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where we choose the specific measures p := U([—1,1]) and v := JU([-2,—-1]) + 2U([1,2]). In
this setting, no continuous function g : R — R can satisfy g#up = v. Indeed, suppose that
such a continuous function g were to exist. On the one hand, since g is continuous, supp(g#u) =
g(supp(n)) = g([—1,1]). On the other hand, by assumption supp(g#u) = supp(v) = [-2, —1]U[L, 2].
However, since g is continuous and [—1, 1] is connected, g([—1, 1]) is also connected, thus [-2, —1] U
[1,2] is connected, which is a contradiction.

We now consider a specific function g which satisfies g#u = v:

R — R
z—1ifz <0
97N z — 0ifx=0 ’ (10)
z+1ifz>0

note that the value at 0 can be chosen arbitrarily. This function is not continuous, so we approach
it by functions ge, with € € (0, 1), which are continuous and non-decreasing:

R — R
r—1ifx < —¢
7Y 2 — ey if z € [—e,¢] (11)
r+1lifzx>e

A straightforward computation yields:

gethp = %11([—2, ~1—e]) +eld([-1—e,1+e])+ %u([l +e,2]), (12)

which we illustrate in Fig. 2. It follows that g.#pu converges weakly towards v as ¢ — 0. As a

2.01 g /

1.5 913

1.0 )

0.51 7/ I:l #

0.0 / /v

-0.51 / B Qi3#U

—-1.01 7 i

s /

-

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-2 -1 0 1 2

(a) Illustration of the maps ¢ from Eq. (10) and (b) Illustration of the image measure g; /3#u with
ge from Eq. (11) with e = 1/3. w=U(-1,1]) and g from Eq. (11).

Figure 2: Illustration of the counter-example to existence.
result, since the measures are compactly supported, W3(g-#u, V) —0> 0, thus the value of Problem
e—>
Eq. (9) is 0.
To conclude, if Problem Eq. (9) had a solution g, then it would be continuous and verify W3 (g#u, v) =
0 (since the problem value is 0), thus g#u = v, which is impossible by the connectivity argument.
Therefore, the problem defined in Eq. (9) does not have a solution.

2.6 Discussion on Uniqueness

A natural question is the uniqueness of a solution of the problem

a‘rgmin 72(9#/“67 V)u
geG

11
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in the case where the measures, the cost and the class G satisfy the conditions of Theorem 2.3,
guaranteeing existence. A first negative answer concerns the simple case where u, v are discrete and
at least two-dimensional. For instance, consider

1 1
W= 5(5(_1,0) +01,0) V= 5(5(07—1) +90,1)-

Then there are two distinct maps g1, go both verifying g;#u = v, which are characterised in L?(u)
by their values on the two points (£1,0).

gl((—l,O)) = (07 _1)7 gl((l,O)) = (07 1)a 92((_1’0)) = (07 1)7 92((170)) = (0’ _1)5

as we illustrate in Fig. 3. The previous example illustrates a potential issue for uniqueness, which is

@)
82

g2
(@)

Figure 3: A simple case with two transport maps between 2-point discrete measures in R2.

the multiplicity of the set {g € G | g#p = v}. Another simple counter-example to uniqueness which
stems from this property is for u = v = N(0, I) the standard d-variate Gaussian distribution. In this
case, any rotation R verifies R#N(0,1) = N(0,1).

More generally, Brenier’s polar factorisation theorem [11] sheds a light on our invariance issue. We
present the theorem below for completeness, see also [17] Section 1.7.2.

Theorem 2.12 (Brenier’s Polar Factorisation [11]). Let K C R? be a compact set, and g : K — RZ.
Consider Uy the probability measure that is the uniform distribution on K, suppose that g#lUx < £,
then there exists a unique (£ -almost-everywhere) decomposition g = (V) o s such that:

o 0: K — R4 is convex;
e 5: K — K is measure-preserving, which is to say that s#Ux = Uk.

To fix the ideas, if we consider 1 = Uy 114, we can fix g € G and assume g7l < Z (see sufficient
conditions for this in Lemma A.1l in the Appendix), then decompose g = Vi os. Then any map
h of the form Ve or with r a measure-preserving map will verify h#Uy 110 = g#U 1)a. To avoid
such potential counter-examples, we will focus on the case where G is a subset of gradients of convex
functions.

We provide a uniqueness result for the Wy case, under the simplifying assumption that v = u. Note
that if L < 1, the identity map does not belong to GG, and there does not exist a ¢ € G such that

g#FuH = p.
Proposition 2.13. Suppose that
G = {g ‘R — R?: g=Vo £ —a.e., v convex, g L — Lipschitz},
and that p € Po(RY) with p < £. Then if go and g1 are solutions of the problem
argnin W3 (g4, 1),

then go = g1 everywhere on supp(u).

12
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Proof. We will show that if gg and g1 are solutions, then go#u = g1#u. First, one may write g; = V;
with ¢; convex (for ¢ = 0,1). By [17] Theorem 1.48, since ¢; is convex, g; is the optimal transport
map between p and Vy;#u. Consider for ¢ € [0, 1] the interpolation g; := (1 — t)go + tg1. Then
by definition (see [1], Section 9.2), the curve (gi#)efo,1] is a* generalised geodesic between go#p
and g1#u with respect to the base measure u. This allows us to apply [/] Lemma 9.2.1, specifically
Equation 9.2.7c, which yields

vt € [0,1], W3 (gi#tn, 1) < (1 — )W3(go#u, 1) + tW3 (g1 #m, 1) — t(1 — )W3 (go#w, g1#1).

The curvature of this generalised geodesic will allow us to build a better solution if go#u # g1#u,
as we illustrate in Fig. 4.

Figure 4: The generalised geodesic based on p between go#p and g1 #u.

Taking ¢t = 1/2 yields, using the optimality of gy and g1 and writing v for the problem value:

1
W3 (g, 1) < v — ng (go#1, g1#t11).

Since G is convex, we have 91 € G, which imposes W3(go#u, g1#1) = 0, since v is the optimal
problem value. We conclude go#p = g1#u. However, as stated earlier, by [17] Theorem 1.48, g; is
the optimal transport map between p and g;#u for @ = 0, 1. By uniqueness of the optimal transport
map in this setting, we conclude ggp = g1. (The equality holds p-a.e., then since gg and g; are assumed
Lipschitz, this shows equality everywhere on supp(u).) O

Remark 2.14. One could replace the set G in Proposition 2.13 by a convex subset of G, the proof
of the result would follow verbatim.

Remark 2.15. The problem in Proposition 2.13 is related to the problem of the Wasserstein metric
projection, which was studied in [17] (see Section 5), from which the curvature argument in our proof
was closely inspired. This Wasserstein projection problem was also studied for WY in [1].

Remark 2.16. Under some assumptions, it may be possible to find subclasses of gradients of convex
functions G such that the set G#u C Po(R?) is geodesically convex (with respect to Wo geodesics):
take go, g1 € G, assume that go#p < £ (Lemma A.1 provides a sufficient condition on gy and p for
this to be the case). Then the Wy geodesic from go# i to qi#u is

v = (L= )1+ tT)#g# o,

where T is the optimal transport map from go#u to gi1#u, which is uniquely defined thanks to
Brenier’s Theorem (see [/ 7], Theorem 1.22 for a possible reference without compactness assumptions).
Since (T o go)#p = qr1#u, under some reqularity assumptions, it may be possible to show that
T o go = g1 using the Monge-Ampeére equation, then (1 —t)I +tT)ogyo = (1 —1t)go+tg1 € G. In this
case, the generalised geodesic based on p coincides with the Wa geodesic between go# i and g1# .

“In this case, since p < &, there is even uniqueness of the generalised geodesic between go#u and g1#u, but we
do not use that fact.

13
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Unfortunately, p — W3(p,v) is not convexr along Wo geodesics, since it satisfies the opposite in-
equality ([/], Theorem 7.8.2). As a result, even if we found a convex class G of gradients of convex
functions such that G#u were geodesically convex, curvature arguments would not yield uniqueness
immediately. Intuition suggests that in some sense, the problem minimises a concave function over
a convex set, which bodes poorly with uniqueness.

In Section 3.2, we shall study the case d = 1 and show uniqueness and an explicit expression for the
minimiser of the map problem for non-decreasing functions g and the squared Fuclidean cost. To
conclude this discussion, even for the favourable case where 1 < Z¢, G is a subset of gradients of
convex functions and ¢(z,y) = ||z — y||3, we conjecture that uniqueness is not guaranteed in general
for d > 2.

2.7 The Plan Approximation Problem

In some cases, one may have access to a transport plan between two measures u, v, which poses
the natural question of finding a map that approximates this transport plan. For instance, one may
compute the optimal entropic plan [13], a Gaussian-Mixture-Model optimal plan [18], or an optimal
transport plan for a cost that does not verify the twist condition (see [17] Definition 1.16), or more
generally an optimal plan when the Monge problem is not equivalent to the Kantorovich problem
(see [11, 27, 12] for some known equivalence cases).

Given a cost C : (R* x R?) x (R* x RY) — R, and measures u € P(RF), v € P(R?), we will want
to approximate a plan v € II(u, v) by the image measure (I, g)#u, where I denotes the identity map
of R¥. We define the Constrained Approximate Transport Plan problem as:

argmin 7o ((1, 9)#u, 7)- (13)
geG

Similarly to Eq. (3), the transport cost in Eq. (13) can be re-written using the change-of-variables
formula (Lemma 2.1):

To((I,9)#u,v) = min / C ((z,9(x)), (y1,y2)) dp(z, y1, y2)- (14)
PEM (1Y) JRE x (RF xRT)

To begin with, one may cast Eq. (13) as a map problem (Eq. (3)), providing existence automatically
under adequate conditions.

Corollary 2.17. Consider the class of functions
G={3:R" — R xR? : §=(r,9) — (z,9(»)), g € G},
the map problem (Eq. (3)) is a particular map problem (Eq. (13)):

min To((1, g)#u,v) = min To(g#u,7),

geG §e@
hence existence holds by Theorem 2.3 if the conditions of the theorem are verified by C,é and the
MEASUTES [L, 7.

Remark 2.18. In the light of Remark 2.6, one could replace the input space RF and the target space
R? by Polish spaces X and Y verifying the Heine-Borel property, in which case condition 1) would
ask for (z1,x2) — C((x1,22), (y1,y2)) to be proper.

We shall see that in certain cases, the two problems Eq. (13) and Eq. (3) are in fact equivalent.

Proposition 2.19. Consider a cost C of the separable form C((z1,z2), (y1,y2)) = h(c1(z1,y1), ca(z2, y2)),
where h: Ry x Ry — Ry, ¢1 : RF x RF — Ry and ¢z : R x R? are lower semi-continuous, with

Vo € R¥, ci(z,z) = 0, and Yu,v € Ry, h(u,v) > v and h(0,v) = v. Let g : R¥ — R? be q
measurable function, v € P(RY) and p € P(R¥). Let v € Tl(u,v) be a plan between u and v.

14
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We assume that the value To((I, g)#p, ) is finite. We have the equality
Teo (991, v) = Te((L, 9)#1, 7).

P?"OOf. For p e H(M37)7 let A(p) = kaX(RkXRd) C((‘/Evg(l‘))7 (yl,yZ))dp($,y1,y2) < +0o0, and denote

A* :=To((I, g)#u, ). Likewise, for m € II(p,v), let B(w) = / c2(g(z),y)dn(z,y), and B* :=
Rk xR4

Te (971, V).

First, we prove A* < B*. By [17], Theorem 1.7, there exists 7* € II(u,v) such that B* = B(7*).
Define p € II(u, ) a measure such that for each test function f,

/ f(z,y1,y2)dp(x, y1,2) = / F 1,91, 92)d7" (y1, y2),
RF x (Rk xR4) Rk x R4

or symbolically “p(daxdydys) = 6y, (dz)m* (dy1dy2)". Then, since h(ci(y1,y1), c2(9(y1), y2)) = c2(9(y1), y2),
we have

A" < A(p) —/

h(ci(y1,y1), c2(9(y1), y2))dn™ (y1,y2) = / c2(9(y1), y2)dn*(y1,y2) = B*.
RE x (R xR4)

Rk xR

Now for A* > B*, we let p € II(u,y). Using h(u,v) > v, we have

Alp) = / her(z,m1), ea(g(@), y2))dp(e, g1, ) > / ex(g(2),y2)dp(a, y1, y2).
RF x (R* x R4) RF x (Rk xR4)

Again, we can define 7 € TI(u, v) such that for any test function f,

[, femdntm = [ (o), v, v2),
RE x R4 RF x (Rk xR4)
and notice

/ ealg(w),va) Aol 1, 9) = B(r) > B,

RE x (R xR4)
which yields A* > B*. O
For example, the cost C(z,y) = ||z —y||3 satisfies these conditions (with h(u,v) = u+v), and thus the
problems Eq. (3) and Eq. (13) are equivalent. This is still the case for costs of the form C' = || - —- [|7
for p > 1 and ¢ > 0, in which case one takes h(u,v) = (u/9 + v'/9)9. For C((x1,x2), (y1,12)) =
|(x1, z2)— (y1,y2)||%,, this is also the case with ¢;(x,y) = ca(z,y) = ||z—yl|/% and h(u,v) = max(u,v).

In contrast, a possible choice of norm on the product space is ||z||s; = (z "X ~'z)'/? for ¥ symmetric
positive-definite. This choice is of interest since the cost C((x1,z2), (y1,¥2)) = ||(z1,72) — (y1,92)|1%
is quadratic (which is desirable for numerics), but does not satisfy the equivalence condition from
Proposition 2.19 as soon as X is not block-diagonal.

In Fig. 5, we illustrate the plan approximation problem for the quadratic cost for two different plans:
the Entropic Optimal Transport plan [10] and the Gaussian Mixture Model OT plan [18]. The
numerics where done using the tools presented in Section 4.2. Note that the plan approximation is
equivalent to a map problem in this case, and has a particular structure due to the one-dimensional
setting, hence we emphasise that Fig. 5 is merely an illustration of the problem at hand.

3 Alternate Minimisation in the Squared Euclidean Case

The map problem Eq. (3) is a minimisation problem over = € II(u,v) and g € G:

min min c(g(x),y)dm(x,y).
miymin /X _ clofa).)dn(zy)

15
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Entropic OT € = 0.03 GMM OT
g1L=05 91 L=05
g, L=15 9, L=15
e T Gum " y
-;
-
S A
/ iy
V‘..
(a) plan approximation solutions for the Entropic- (b) Hlustration of plan approximation solutions
OT plan [10]. for the GMM-OT plan [18].

Figure 5: Illustration of solutions of plan approximation problems (Eq. (13)), for two different plans
between Gaussian Mixtures. We compare the plans with L = 1/2 and L = 3/2-Lipschitz solutions,
as well as to the barycentric projection of the given plans (see Section 3.1).

In this section, we study this alternate minimisation problem in the case where c(z,y) = ||z — y||3
and X = R, thus with maps ¢ : R — R,

When 7 € II(y, v) is fixed, the sub-problem has the particular structure

win [ lgta) - slfidn(e.p). (15)
geG X xR4

To ensure the finiteness of the cost, we assume that u,v € Psy (Rd). We shall see in Section 3.1 that
the problem in Eq. (15) is equivalent to the L? projection of the barycentric map 7 onto the set G,
provided that G is a convex and closed subset of L?(u).

When g € G is fixed, the problem reads

min / l9(x) — yl3dn(z,y). (16)
TFEH(H,J/) X xRd

and can be seen from two different viewpoints: either as the squared Euclidean optimal transport
problem between g#u and v (i.e. W3(g#pu,v)), or as the optimal transport problem with cost
c(z,y) = |lg(x) — y||3 between p and v. If g#u is absolutely continuous and v is discrete, then
Eq. (16) is a semi-discrete OT problem. We provide sufficient conditions on g for this to be the case
in Appendix A.1.

This alternate minimisation viewpoint poses a natural question: if w := 7* € II*(u, v) is an optimal
plan between p and v for the quadratic cost c(y,y’) := ||y — ¥/||3, does the following equality holds?

. . ? .
argmin  min / l9(e) — yl3dn(e,y) ~ argmin / lo(@) — yl3dn* (@), (17)
geG  mEN(uv) JyxRrd geG X xR

In Section 3.2, we prove that this equality holds in the one-dimensional case X = R? = R and if
G is a subclass of non-decreasing functions, thus generalizing a result of [37]. We also provide a
counter-example of this property when d > 2 in Section 3.3.
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3.1 Projection of the Barycentric Map
In this section, we will show that the sub-problem with = € II(u,r) fixed can be written as the

following L? projection problem:

argmin / lg(z) — yll3dn(z,y) = argmin [lg — 72,
geG X xR geqG

where 7 is the barycentric projection of 7 (defined below), and L?(u) is a shorthand for L?(u; R%),
the space of measurable functions 7' : X — R such that [, [|T(z)||3du(z) < +oo. We begin by
briefly introducing the notion of barycentric projection.

The barycentric projection of 7 is the map 7 : R? — R? defined for p-almost all z € R? by
7(x) = E(xy)nr[Y[X = a]. (18)

As illustrated in Fig. 6, if 7 admits a disintegration with respect to its first marginal u of the form
m(dady) = 7 (dy)p(dz), then

7(w) = [ ydr(o).

Figure 6: Illustration of a barycentric projection. The disintegration of the coupling m with respect
to its first marginal p at x is the measure 7w, concentrated on the dotted line. The barycentric
projection of 7 evaluated at = is the mean of the measure 7.

Since the conditional expectation minimises the L? distance, we also have

7 = argmin / ly — T(@)|3dn(z, ), (19)
TEeL2(p) JR2d

where the equality is to be understood in L?(z). Another interesting property is that if 7 = 7% €
IT*(u, v) is an optimal transport plan between p and v with respect to the squared Euclidean distance
cost, then by [1], Section 6.2.3, there exists ¢ : R? — R convex such that for 7*-almost-every
(z,y) € R%, we have y € O¢(x), where dp(z) denotes the Fréchet sub-differential of :

o p(2) (@) — (Y, 2 — @)
y € 0p(x) <= lim inf o=l

> 0.

Since the Fréchet sub-differential of a convex function is convex, it follows that for p-almost every
r € RY 7 (x) € Op(x).

If we require constraints on 7' in Eq. (19), we obtain exactly the sub-problem of the map problem
with a fixed plan 7 (Eq. (15)), which we reproduce below:

arguin [ {g(a) - ylBdr(a.y).
geqG X xR4
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For this reason, we call this problem the Constrained Barycentric Map problem. A consequence of
the proof of Theorem 2.3 is that this problem has a solution. If G is a convex set and closed in L?(p),
then existence and uniqueness are guaranteed by the Hilbert projection Theorem. Since 7= minimises
the L? distance, it is a solution of Eq. (15) if it is in G.

Using the fact that the barycentric projection is an L? projection (Eq. (19)), one may re-write the
Projected Barycentric Map Problem Eq. (15) as an L? minimisation with respect to the barycentric
projection. In Proposition 3.1, we need not assume that X = R? but we shall apply it later in
Section 3.2 to the case X = R.

Proposition 3.1. Let 7 € H(pu,v) and f : X — RY be a measurable function. Then one has

ly —7(2)l3dn(z,y),  (20)
R4

X

[t = slante) = [ 17 =7 dnte) + [

and as a result, the Projected Barycentric Map problem Eq. (15) is equivalent to the problem

argmin | lat@) = =(a) (o). (21)

Moreover, the second term on the right-hand side of Eq. (20) only depends on T and the measures
w,v (it doesn’t depend on 7). More precisely, we have

/ ly - 7(@) [3dm(z, y) = ma(v) — ma(THu),
X xRd

where ma(p) := [ ||z||3dp(z) for a positive measure p.

Proof. Denote J the left-hand-side of Eq. (20), and compute (taking the expectation under (X,Y) ~
7)

J=E[|Y - f(X)[3] =E[|[Y - 7(X) + 7(X) + F(X)II3]
=E[|lY -7 I3] +E [I7(X) + F(X)[3] + 2B [(v = 7(X)T(7F(X) + F(X)] .

then since 7(X) is the orthogonal projection of Y onto the set of random variables that are functions
of X, the inner product E [(Y —7(X)TF(X) + f(X))} is zero, yielding Eq. (20).

We can expand the norm in the second term of the right-hand side of Eq. (20) using ma(v) the second
moment of v and get

[ o=l ) = ma) 2 |

y - w(x)dn(z,y) + / (@) |3 (a).
X xRd X

Writing the disintegration of 7 w.r.t. p as m(dz,dy) = 7, (dy)u(dz), we re-write the second term as

Joge? @) = [ 700 ([ i) aute) = [ 70 T@ante) = marn

Putting our computations together yields

/ ly — (@) |3dm(z, y) = ma(v) — ma(THp).
X xRd
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Remark 3.2 (Ties to the Convex Least Squares Estimator [32].). In [72], Manole et al. study the
statistical properties of various estimators of Optimal Transport maps, assuming some regularity on
the input distributions. Specifically, they introduce the so-called Convexr Least Squares Estimator:
given fu, == L3 6, with the (x;) being i.i.d. samples of 1 and D, = L iy Oy, with the (y;)
1.1.d. samples of v, the estimator is defined as

n m
Tom=V¢, ¢ e€argmin Y > & Vele:) -yl (22)

PEPL =1 j=1
where #* is an optimal transport plan between fi, and D,,, and where ®1 is the set of C' convex
functions from Q C R? to R with a L-Lipschitz gradient. Notice that Eq. (22) is a Constrained
Barycentric Projection problem Eq. (15) with a specific (discrete) transport plan #*, chosen to be the
optimal transport plan between fi, and Dy,, and with the particular class G := Fg ¢ (introduced in

Section 2.3).

3.2 Equivalence to a Constrained Barycentric Projection in Dimension 1

In this section, we shall prove that the Constrained Approximate Transport Map problem (Eq. (3))
is equivalent to the Constrained Barycentric Projection Problem (Eq. (15)) for the quadratic cost in
dimension 1. This provides a positive answer to the question raised in Eq. (17) in this particular
case. The idea behind this equivalence stems from the fact that in dimension one, optimal transport
maps are non-decreasing, and the composition of two optimal transport maps remains an optimal
transport map.

Proposition 3.3. For u,v € P2(R), and G a subclass of the non-decreasing functions g : R — R
such that g#p € P2(R), we have the equality

argmin W3 (g#p, v) = argmin |g —7%|72(,, (23)
geG geG
where 7 is an optimal transport plan between p and v for the squared Euclidean cost.
Proposition 3.3 generalises [37] Proposition 1, which proves the same equivalence for a specific class

of functions G, and assuming p to be either discrete or absolutely continuous with respect to the
Lebesgue measure.

The proof of Proposition 3.3 hinges on Lemma 3.4, which is intuitive in the absolutely continuous or
discrete case, but a bit more technical in full generality. We write below the cumulative distribution
function of a probability measure p as F), := x —— p((—o0,x]). Since it is non-decreasing, we can
define its right-inverse as (using the notation R := R U {—o00, +00}):

Fy:R—R: VpeR, F, (p):=inf {z €eR| F,(z) >p}.

Lemma 3.4. Let p € P(R) and g : R — R be a non-decreasing function, we have the following
almost-everywhere change of variables formula for the quantile functions of g#u and p:

F;;/:u =go F,i_, Zo,1)-almost-everywhere.
Proof. The proof is provided in Appendix A.2. 0

Proof of Proposition 3.3 . Let g € G. By [17] Proposition 2.17 and by Lemma 3.4 successively, we
have

1 1
W%(Q#MW)Z/O IFﬁu(p)—Ff(p)de:/o Igoﬂf(p)—I*T(p)l%lpz/IR2 lg(z) — y[*dm(z,y),
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where 7 := (F, PR )#-Z(0,1], which by [17] Theorem 2.9 is the unique optimal plan between y and
v for the squared Euclidean cost. We apply Proposition 3.1, which yields

Wittt ) = [ lote) = yPdra) = [ la(e) = 7(@)Pdula) + ma(v) = ma(mt).
Given the expression of the right-hand-side above, we conclude that
argmin W3 (g#p, v) = argmin [|g — 772,
geG geG

(for any optimal transport plan 7* between p and v for the squared Euclidean cost, and we have even
remarked that such a plan is in fact unique) since the costs are equal up to a constant independent
of g. O

3.3 Counter-Example to Equivalence to Constrained Barycentric Projection in
Dimension 2

In this section, we provide a negative example to the question formulated in Eq. (17), namely that

argmin W3(g#u, v) # argmin [lg — 7 12,
9€G geqG
where 7* is an optimal transport plan (for the squared Euclidean cost) between p and v, in dimension
d > 2. We take G to be the class of monotone continuous functions g : R> — R?, which is to say
that

Va,y € R?, (g(z) — g(y),x —y) > 0.

Note that gradients of convex functions are monotone, but the converse does not hold. For (a, b, x) €
(0, +00)3, we consider the following measures:

2 1 2 1
pi= 3000,0) T 30(0) and V= 20(0,0) + 30(—ap)-
There is a unique optimal transport plan 7* between u and v, given by

T = 55(0,0)®(0,0) + 55(0,0)®(—a,b) + g‘s(w,0)®(0,0)'

Its barycentric projection is characterised by the following equation
7%(0,0) = (—a/2,b/2) and 7*(z,0) = (0,0).
We now consider the problem mlg” g — 7 ||r2(u)- A solution of this problem is characterised by its
g€

values on the support of u, and one may reduce the problem to an optimisation over ¢(0,0) and
g(x,0), with the monotonicity constraint (g(0,0) — g(x,0), (0,0) — (x,0)) > 0. Since 7* itself verifies
this condition, it is the only solution (in the sense of L?(u)). We conclude

argmin ||g — 7|72, = {7}
geG

We now show that the problem argmin W3(g#u, v) has a different solution set. First, we compute
geG

— a® + b?
Wi y) =
However, if we introduce g € G such that ¢(0,0) = (0,0) and g(z,0) = (0,b), we have
2
a
W%(g#ﬂa V) = ?
For instance, (a,b,z) := (1,10, 1) yields

a2 +0v® 101 a? 1
5 :7>W3(g#u,1/):*:*-

We illustrate the point configurations for (a,b,z) := (1,3,1) in Fig. 7.

Wi (T #p,v) =
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Figure 7: Illustration of the two-dimensional counter-example to the equivalence of the map problem
to the L? projection of the barycentric projection. The four points close to (0,0) are represented
with an offset for legibility, and represent four points equal to (0,0) exactly.

4 Discrete Measures and Numerical Methods

In this section, we consider some numerical methods to solve the approximate map problem for some
specific function classes. To prepare for convergence results, we dedicate Section 4.1 to regularity
properties of the transport cost in the discrete case. In Section 4.2, we present methods in the case
where G is the class of L-Lipschitz gradients of /-strongly convex potentials (presented in Section 2.3).
For the squared Euclidean cost, these methods were introduced in [37], using convex interpolation
results from [52]. In Section 4.3, we consider a simple kernel method which solves a regularised version
of Eq. (3). This type of method hinges on the fact that kernel methods yield a finite-dimensional
parametrisation of the function g, and allows for provably convergent gradient descent methods. In
Section 4.4, we consider a Stochastic Gradient Descent method for the case where the map g is a
Neural Network. Finally, in Section 4.5, we illustrate the use of the methods presented in this section
on the problem of colour transfer.

4.1 Regularity of Discrete Optimal Transport Costs

To study the convergence of sub-gradient descent methods theoretically, we will introduce standard
notions from non-smooth non-convex analysis, in particular a specific generalisation of sub-gradients,
which are in practice computed by automatic differentiation. A central notion in this analysis will
be the notion of semi-algebraicity, which we remind in Definition 4.1 (and refer to [56] and [10] for
more details).

Definition 4.1. A set S C RY is said to be semi-algebraic if it can be written under the form
S =UN,nNM_ 'S, ., where each Sy is either of the form {x € R : p, m(z) = 0} or {z € R? :
Pnm(2) > 0}, where ppm s a d-variate polynomial with real coefficients.

A function f : RN — R% s semi-algebraic if its graph {(z, f(x)) : x € R4} is a semi-algebraic set.

A multifunction f : RY = R% is semi-algebraic if its graph {{z} x f(x) : © € RN} is a semi-algebraic
set.

Another central notion will be a generalisation of the notion of gradient for locally Lipschitz functions
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called the Clarke differential.

Definition 4.2. Given a locally Lipschitz function f : R* — R, its Clarke sub-gradient at z € R?
is the set

Jc f(x) = conv {tgriloon(xt) 1T T, B € Df} ,
where Dy is the set of differentiability of f and conv denotes the convex envelope.

In Proposition 4.3, we show that the discrete OT cost is semi-algebraic and locally Lipschitz as a
function of the cost matrix, and that its Clarke sub-gradient is itself semi-algebraic.

Proposition 4.3. Consider weights a € A,, (the n-simplex) and b € A, (the m-simplex), and the
discrete Kantorovich cost function

R R

W(a,b,-) 3:{ M — min w-M
w€ell(a,b)

Then the map W(a,b,-) is semi-algebraic, Lipschitz, and its Clarke sub-gradient is semi-algebraic
and writes for M € R™*™;

dcW (a,b,-)(M) = argmin 7 - M.
well(a,b)

Proof. Writing the extremal points of the polytope I(a,b) as (m;)X, the function W (a,b,-) can be
written as a finite minimisation over 7 € (m;))¥.; of linear functions of M, hence W (a,b,-) is semi-
algebraic. The fact that W (a,b,-) is Lipschitz is also its consequence of its expression as a minimum
of a finite amount of linear maps. The expression of sub-gradients of W (a,b,-) is a consequence
of Danskin’s Theorem [I1]. Finally, the semi-algebraic property of dcW (a,b, ) is a consequence of
the fact that W (a,b,-) is semi-algebraic and locally Lipschitz, or can alternatively be seen using the
extremal point method as done for W(a,b, -). O

In Lemma 4.4 we remind some useful properties of semi-algebraic maps that we will use later on. In
particular, semi-algebraic maps are generalised differentiable (see [22] Definition 3.1), which can be
understood as a generalised first-order Taylor expansion.

Lemma 4.4. Any locally Lipschitz semi-algebraic map f : R — R is generalised differentiable (see
[22] Definition 3.1) and its set of critical values f{x € R%:0 € Oc f(x)} is finite.

Proof. Since f is semi-algebraic and locally Lipschitz, by [3] Theorem 3.6 it is semi-smooth, which in
turn implies generalised differentiability (by [35] Theorem 1.4). Next, by definable Morse-Sard (from
[10] Theorem 5), the set of critical values f{z € R%:0 € dc f(x)} is finite. O

4.2 Numerical Method for Gradients of Convex Functions

In this section, we present numerical methods to solve the approximate problem in the case of the
function class Fg o of functions g : R — R that is L-Lipschitz and gradient of an (-strongly
convex function ¢ € C'(R? R), on each part Ej of the fixed partition £. We already introduced
this class in Section 2.3, and it was first considered in the context of map problems by [37]. The
numerical methods will aim to solve the problem

argmin 7.(g#u, v), (24)
pEFe, Lk

with a particular emphasis on the case where c is quadratic, i.e. c(z,y) = (z—y)T Q(z—y)+b" (z—y),
where Q € S; (R) is a positive-semi-definite matrix, and b € R?. For our numerical questions, we

consider the discrete case
n

W= Zaiémi, V= ijéyj.
j=1

=1
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Obviously, we need to assume that the measure p is compatible with the partition, which is to say
the the z; are never at the boundary of a part Ey: Vi € [1,n], x; € (UyOEk)°. The objective in
Eq. (24) only depends on the values ¢; := ¢(x;) and g; := g(x;), the immediate question is that
given a candidate (¢;,g;) € (R x R%)™, does there exist a function g € Fe 1 of the form V which
interpolates these values, i.e. g(z;) = ¢g; and ¢(x;) = ¢;? This question, which is called Fg 1 4-
interpolation, was studied by Taylor [52]%. We write Fp, ¢ := Fg 1 ¢ in the case £ = {R?}, and present
the results in the restricted case where the space is R?, as opposed to any vector space.

Proposition 4.5. (Multiple results from Taylor [52, 55]). Let S = (x4, gi, ¥i)ic[in] € (RYxRExR)™.
The set S is said to be Fp, p-interpolable ([52], Definition 3.1) if there exists ¢ € Fr g such that
Vi e [1,n], V() = ¢g; and p(x;) = ;. Consider the quadratic function
Q,2',0,¢',9,9) =9 —¢' =gz —2') —clg = |3 — e2lle = 2|3 + es{g' — g, 2" —z),  (25)
forz,x' € R o, ¢ €R, g,¢ € RY, with
Pyp— 1 pyp— /g pyp— /g
VTora-e¢rLy T 2a—¢Ly T Ia-¢L)
o ([52], Theorem 3.8) The set S is Fy,¢-interpolable if and only if for all i,j € [1,n],

o ([52], Theorem 3.14) For x € RY, let:
= i t, 27
pi() i (27)
s.t. VJ € [[1,77/]], Q(l‘,xj,t, @jag7gj) > 07

r) = max ¢, 28
SOu() teR, geR? ( )

s.t. Vi e [[1771]], Q(xi7x7g0i7tagiﬂg) > 0.

If S is Fr e-interpolable, then any interpolating function ¢ satisfies ¢ < ¢ < @y, and the
potentials ¢y, p, are valid interpolations.

Proposition 4.5 shows that the constraint on (¢;, g;); can be written as a set of quadratic constraints.
It follows immediately that any problem that only depends on the values g(z;) for a variable G €
Fe 10 can be written as a problem over (g;, g;); under quadratic constraints, as stated in Corollary 4.6.

Corollary 4.6. Consider an objective J : Fg 1,0 — Ry such that for g € Fe 1,4, the value J(g) can
be written J (g(z1),- - ,9(zyn)). Then the problem

min J 29
Gin (9) (29)
s equivalent to the problem
min __J(g(z1),- -+, g(2n)) (30)
P10 pn €ER
gl?”' 7gn€Rd

s.t. Vk € [[17K]]7 VZ,] € Ik : Q(xux_]vwza@]agzagj) > Oa
where I, == {i € [1,n] | z; € Ex}, and Q is defined in Eq. (25). Given a solution (¢}, g;)i of
Eq. (30), any solution V* of Eq. (29) satisfies o1 < ¢* < ¢, on UpEy, where for x € Ej, the
bounding potentials and their gradients are solutions of:
(p1(x), Vi (z)) = argmin ¢, (31)
teR, geRd
st. Vj € I, Q(x,75,t,95,9,97) > 0;

®Note that ([52], Theorem 3.14) writes an erroneous argmin for ¢,: in the light of ([52], Remark 3.13), it should
instead read argmax, especially given the fact that the minimisation problem is unbounded.
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(pu(®), Viou(z)) = argmax ¢, (32)
teR, geR4

s.t. Vi € Iy, Q24 2,9;,t,9;,9) > 0.
The potentials (¢, @) themselves are both solutions of Eq. (29).
Note that the values of the potentials can be chosen arbitrarily on the boundaries 0FEy.

We can now provide an algorithm for argmin Te(g#u,v) (Eq. (24)) using Corollary 4.6: the

objective is

gEFe Le

(g(e). - g(en) = min zj: mie(g(i), j), (33)
and the resulting problem defined in Eq. (30) can be solved by alternating over 7 (solving a discrete
Kantorovich problem, using ot.emd from the PythonOT library, for instance [26]), and over (¢;, g;),
for which the constraints are quadratic and the objective depends on the cost ¢. For smooth cost,
one may use projected gradient descent, and for (convex) quadratic costs, the problem becomes a
(convex) Quadratically Constrained Quadratic Program (QCQP). In the case ¢(x,y) = ||z —y||3, this
method is already known, and is the core contribution of [37] summarised in Algorithm 1, with a
generalisation to convex quadratic costs cp(z,y) := (x — y)T P(x — y) with P € S;T(R) (a positive-
definite symmetric matrix). We remind the notation II7 (g#u, V) as the set of optimal couplings
between g#u and v for the cost cp.

Algorithm 1: Alternate Minimisation for the Gradient of Strongly Convex Functions.
Data: Strongly convex constant ¢ > 0, Lipschitz constant L > ¢, disjoint point classes
I, C [1,n] and discrete probability distributions u =3, a;6z, and v = 37, b;dy,.
1 Initialisation: Compute 7 € IT7, (11, ) ;
2 for t € [0, Tynax — 1] do
3 Update (¢i, gi)ic[1,n] by solving the QCQP:

4 min__ 3, 5(gi — y5)" Plgi — yj)mij
1, pn€R
917"'7gneRd

5 s.t. Vk € [1, K], Vi,j € I : Q(xs, x5, ¢i, ¢j, 9i, 95) > 0.

6 Update 7 by solving the discrete Kantorovich problem: 7 € IT7,  (9#u, v).
7 end

8 Return: (¢;, 9i)ic[1,n]-

Time complexity. From a time complexity standpoint, the QCQP problem at lines 3-4-5 bears a
substantial cost. As a coarse analysis, standard methods such as [57] have O(L?2N*) complexity, where
N is the dimension of variables, here N = (d + 1)n, and where L = N2 + NM + R, where M is the
number of constraints, here M = 3", #I%, and R = [log |T|], with T the sum of the non-zero integers
in the float representation of P and the constraint matrix. For simplicity, we will continue with K = 1
and thus M = n?. This yields the final (prohibitive) complexity: O ((n(d + 1) +n?® + R)?(d + 1)*n?).
For the transport cost, using the network simplex (see the explanation in [39] Section 3.5), omitting
multiplicative logarithmic terms, the time complexity of solving the linear Kantorovich problem
between measures with n and m points and cost matrix M is O((n + m)nmlog(n + m)log((n +

m)|[M|lo)) [51].

In Fig. 8, we present a numerical example of the method for a map fitting a two-dimensional standard
Gaussian to a two-dimensional Gaussian Mixture. Since no public implementation of the QCQP
problem from [37] is available, we contributed a solver for Algorithm 1 for the squared-Euclidean
cost in the Python OT library [26], with an example ©.

Shttps://pythonot.github.io/auto_examples/others/plot_SSNB.html#sphx-glr-auto-examples-others-plot-ssnb-py
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for the map estimated with Algorithm 1. from Algorithm 1 on a grid.

Figure 8: Illustration of the method described in Algorithm 1 for the map problem from samples of a
standard Gaussian distribution to samples of a Gaussian mixture. The map g is constrained to be 2-
Lipschitz and the gradient of a 1/2-strongly convex function. The cost is taken as c(x,y) = ||z — y||3.
Note that due to the constraints, we obtain an inexact matching, with in particular leakage between
the modes of the target distribution.

4.3 Numerical Method for Maps in a RKHS

We introduce a relatively straightforward kernel method to solve the map problem (Eq. (3)). We fix
a reproducing kernel Hilbert space (RKHS) H of functions X — RY of kernel K : X x X — R9*4,
We denote by (-, )7 the inner product on #, and || - || the associated RKHS norm on #.

Given discrete measures u = 37 a;0;, € P(X) and v = 37U, bjdy, € P(RY), we will solve a
regularised variant of the map problem (Eq. (3)):
argmin To(h#p, v) + M|hlf3,, (34)
heH

for some constant A > 0 that penalises the norm of h, which equates to imposing regularity on the
function h. Given the support of u, the cost T.(h#u,v) only depends on (h(xy), -, h(zy,)). A well
known reduction method in RKHS theory (detailed in Appendix A.3 for completeness) then allows
to look for solutions in an n-dimensional linear subspace V of H:

V= {ZK(-,xk)uk : Yk e [1,n], uy € Rd}, of argmin To(h#pu,v) + \|hl|%. (35)
=1 hev

Since any element h € V is characterised by its coefficients (u1,--- ,u,) € (RY)", we can formulate
Eq. (35) as a problem over the (u;). First, using the kernel reproducing property, we compute

2 n n
= Z ZugK(xk,xl)ul. (36)

H k=11=1

Z K(’ l’k)uk
k=1

Concerning the transport cost term, we remind the notation for the value of the Kantorovich discrete

problem

W(a,b, M) := Irrll(ln : M -,
mell(p,v

and in this case, the cost matrix M can be computed using the expression

V(i,j) € [1,n] x [1,m], M;; =c (i K(xi,xk)uk,yj> . (37)

k=1
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The dependency in the (u;) lies in the cost M. Numerically, provided that c is sufficiently regular,
this allows a minimisation through classical algorithms such as gradient descent, using differentiable
implementations of the discrete Kantorovich cost, such as ot.emd2 [26]. By introducing the nd x nd
matrix K defined by n x n blocks K (z;,x;) of size d x d:

K(x1,21) -+ K(z1,2p)
K = : : : (38)
K(zp,z1) - K(xn,zp)

and the stacked vector u € R Egs. (36) and (37) can be re-written as matrix products. This yields
our final expression for Eq. (34):

min W(a,b, M(u)) + A’ Ku, M(u);; :=c (K[i qu, yj) , (39)
ucRnd '

where Kj; ; denotes the sub-matrix of K with the n lines ((i — 1)d + 1, ,id), which corresponds

to the i-th d x d block line of K. Given optimal coefficients u = (ug,--- ,u,) € (RY)", a solution h

is defined everywhere in X using the kernel:

Ve e X, h(z) = E:K(x,azz)uZ
i=1

Remark 4.7. The only constraints that are imposed upon a solution of Eq. (34) come from the choice
of the kernel K (or equivalently of the space H) and of the regularisation coefficient X > 0. A natural
idea would be to add a regularisation term R(h), for instance to enforce h to be a gradient of a convex
function. For Lemma A.5 to apply, one would need to have a regularisation which only depends on
the values (h(x;)), which is very restrictive. A possible heuristic would be to look for h € V' regardless
of this property on R, however the resulting problem would have no theoretical link to the problem
over h € H, unlike in our case. Finally, a reqularisation which depends on an infinite amount of
values h(x) are numerically challenging, in the specific case of dense inequality constraints, we refer
to [//] as a useful tool.

Remark 4.8. A natural idea is to consider class of functions that are perturbations of a simple map,
for instance g = sI + h, where h is in a RKHS H, and s > 0 is a scale factor. Given Lemma A.5,
this tweak comes without numerical or theoretical cost.

We illustrate this kernel method in Fig. 9 with the Gaussian kernel K (z,y) = exp (—||z — y||3/(20?)) 14
and maps of the form g = I + h, where h is in the RKHS generated by the Gaussian kernel.

From an algorithmic viewpoint, we propose in Algorithm 2 a simple (sub-)gradient descent method
(GD) for the discrete kernel map problem Eq. (39), and provide a convergence result in Proposition 4.9
using results from Section 4.1 and Ermoliev-Norkin [22].

Concerning time complexity, there are two main bottlenecks: the matrix-vector computations Ku
which incur a O(n%d?) cost, and solving the discrete Kantorovich problem, which is in O((n +
m)nmlog(n + m)log((n +m)||M|l)), as discussed in Section 4.2. Note that for memory efficiency,
one may use map-reduce methods such as proposed in [12] to avoid storing the matrix K, at the
cost of a higher time complexity. For scalar kernels K (z,z") = k(x,2’)1y, it suffices to store K :=
(k(zi,24))ij; € R™™ reducing the memory complexity to O(n? + nd), and matrix-vector products
to O(n%d).

Proposition 4.9 (Convergence of GD for the Kernel Method, application of [22] Theorem 4.1). Take
a locally Lipschitz and semi-algebraic (see Definition 4.1) cost function ¢, and gradients steps oy > 0
such that oy — 0 and ", oy = +00. The iterates () of Algorithm 2 are such that any accumulation
point v is Clarke critical: 0 € ¢ J(v), with J(u) := W(a,b, M(u)) + Au’Ku.
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"
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I+h; 02=0.01 I+h; A=0.003
I+h; 02=0.03 I+h; A=0.01
a) Kernel map solution for a regularisation A\ = (b) Kernel map solution for a scale 02 = 0.01 and
0.01 and multiple scales o2. multiple regularisations A.

Figure 9: Illustration of the kernel method for the map problem between two Gaussian mixtures,
using the Gaussian kernel. In greyscale, the OT plan is represented for reference.

Algorithm 2: GD on the Kernel Map Parameters.
Data: Gradient steps oy > 0, kernel regularisation A > 0, discrete probability distributions
p=32;a;0, and v =3, b;dy,, kernel function K.
1 Pre-Processing: Compute the matrix K from Eq. (38);

2 Initialisation: Draw uy € R™¢:
3 for t € [0, Timax — 1] do

4

Ul = W — oy [8811 (W(a, b, M(u)) + )\uTKu>] (see Eq. (39)).

u=ug
5 end

Proof. First, by Proposition 4.3 and by semi-algebraicity and local Lipschitzness of ¢, J is locally
Lipschitz and semi-algebraic. Using now Lemma 4.4, we have the sufficient regularity conditions to
use the convergence result of [22] (Theorem 4.1). O

4.4 Gradient Descent for Neural Networks

We now consider the case where the function class G is the class of neural networks introduced in
Eq. (8), with parameters in a compact set ® C RP, which we also assume to be convex. We will
introduce a technical modification of the neural network from Eq. (8) and consider the parametrised
function:

h:=(0,2) — gpy(e)(T), (40)

with ¢ the map defined Eq. (8), and where the map Pg : RP — O denotes the orthogonal projection
onto ©. This re-writing allows us to define the NN h on all of RP D ©. In practice, SGD with
this network is essentially equivalent to projecting the parameters after each gradient step (with the
technicality that in our formalism, the gradient of Pg is included in the backpropagation).

To solve the map problem of minimising 7.(h(0,-)#u,v) in practice, we consider a commonly used
minibatch surrogate loss F(6), which we define in Eq. (41). Given a dataset X(® ¢ Rk —
(z1,-- ,n), we will denote abusively h(6, X)) € R"*? .= (h(6,z,),--- ,h(0,x,)). Given a dataset
X € R™F the measure dx» € P(R*) denotes L5 62,. Similarly, we will denote a target dataset

27



Constrained Approximate Optimal Transport Maps E. Tanguy, A. Desolneux and J. Delon

Y (™) The loss F we consider is
F(0) := / Te(B(o.x w9, Oy )ApE™ (X M) dp®™ (Y (), (41)

The loss F' will be minimised by Stochastic Gradient Descent over 6, where the stochasticity is on
the data batches X(™ and Y™ as described in Algorithm 3.

Algorithm 3: Training a NN map for the cost 7.

Data: Gradient steps oy > 0, probability distributions p € P(R¥) and v € P(R?), NN
h(b,.).
1 Initialisation: Draw 6, € ©;
2 for ¢ € [0, Tinax — 1] do
3 Draw X ~ p@n y(m) ~ p@m,

0
4 Or1 =01 — %72(5h(97x(n>), Sy (m))

0=0;
5 end

An important remark is that this formalism bears strong similarities to the alternate minimisation
framework studied in Section 3 for the squared-Euclidean cost. Indeed, it can be seen as an alternation
of the map parameters ¢ and the (minibatch) OT plan 7 in 7. (line 4): the optimisation over 7 is done
by solving the linear program when computing the cost 7., and then one gradient step of optimisation
over 6 is performed. To study Algorithm 3 theoretically, we will give precise meaning to the partial
derivative at line 4 using the notions introduced in Section 4.1. Numerically, the sub-gradients in
question are computed by automatic differentiation. Note that Pg is Lipschitz and semi-algebraic.

Thanks to the regularity result on the OT cost proved in Proposition 4.3, we can use recent SGD
convergence results by Bolte, Le and Pauwels [9] to show that the iterates of Algorithm 3 converge
in a certain sense. First, to give sense to the gradient in Algorithm 3, we remark that for locally
Lipschitz semi-algebraic activation functions, the map h(,-) is semi-algebraic and locally Lipschitz.
By composition using Proposition 4.3, the sample loss function:

f('a X(n)7 Y(m)) =0 72(5h(9,X(n))a 5(Y(m)))7

is locally Lipschitz and semi-algebraic. We can select a semi-algebraic sub-gradient ¢ : R? x R?** x
R™*d 5 RP such that

Vo e RP, vX (™ e R™F vy (M e Rmxd 9, XM v M)y € 9o f(0, X ™)y (™),

where the selection can be done by lexicographic order on coordinates, for example. Note that
fl, X () Y(m)) is differentiable almost-everywhere, and that at differentiable points, ¢ equates its
usual gradient. The choice of sub-gradient performed by automatic differentiation satisfies this
condition (see a discussion on this procedure in [10, 15].) We remind that the population loss
function is F = 0 — [ £(, X, Y (™)du®™(X™)dr®™ (V™) in this setting.

Proposition 4.10 (Convergence of SGD for NN maps, application of [9] Theorem 3). Assume that
w, v are discrete measures or compactly supported measures with semi-algebraic densities with respect
to the Lebesgue measure. Assume that the NN h is defined as in Eq. (40), with locally Lipschitz
semi-algebraic activation functions. Assume that © is compact, conver and semi-algebraic. Suppose
that the cost function ¢ : R x R — R is locally Lipschitz and semi-algebraic. Take gradient steps
(a)ien € (0,4+00)N such that 3, oy = +00 with ay = o(1/log(t)).

Then there ezists a set of possible steps A C (0,+00) whose complement is finite, and a set of
possible initialisations ©g C © of full measure, such that for each step sequence (cy) € AN werifying
the conditions, the stochastic gradient descent iterates:

90 € @0, Vt € N, 9t+1 = 91‘, — Oétgp(gt,Xt(n),ift(m)), Xt(n) ~ M®n, }/t(m) ~ I/®m,
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verify that almost-surely, (F(6;)) converges, and almost-surely any accumulation point 0 of (6;) is
such that 0 € OcF(0), under the (mild) additional assumption that that the trajectories (0;) are
almost-surely bounded.

Proof. We apply Bolte-Le-Pauwels [9], Theorem 3 to the NN h with the discrete OT loss from
Proposition 4.3. Thanks to the assumptions formulated in the result statement, to Proposition 4.3 and
to the construction of a semi-algebraic sub-gradient selection ¢, we have collected all the conditions
for Bolte-Le-Pauwels, Theorem 3, yielding the result. For the case where one or both of {u, v} is/are
discrete, we applied their Remark 3. O

In Fig. 10, we present a numerical example of the method for a map fitting a two-dimensional standard
Gaussian to a two-dimensional Gaussian Mixture.
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(a) Comparison of images of samples of the source
Gaussian by the learned NN map to the target
Gaussian Mixture.

(b) Evaluation of the learned NN map g : R? —
R? on a grid.

Figure 10: Illustration of the method described in Algorithm 3 for the map problem from samples
of a standard Gaussian distribution to samples of a Gaussian mixture. The map g is of the form
g = I+ h, where h is a small 4-layer NN with ReLLU activation functions, and weights constrained to
[~1/2,1/2]. The cost is taken as c(x,y) = ||z —y||3. Note that due to the (indirect) constraint on the
Lipschitz constant, we obtain an inexact matching, with in particular leakage between the modes of
the target distribution.

4.5 Illustrative Application to Colour Transfer

In this section, we consider the task of colour transfer, which consists in transforming the colour
distribution of a source image onto the colour distribution of a target image. An (n x m) RGB
image is seen as a 3-tensor I € [0,1]"*™*3  and its colour distribution is then a discrete measure

_ 1 3
o= %Zz,g 5Ii,j on R”°.

We illustrate that a learned map g : R — R? which is optimised to transfer the colours of a source
image I; onto a target image I, can be used on a new image I to transfer its colours. This is made
possible since the map ¢ is defined everywhere, and not only at the points of u. We consider the
cost c(z,y) = ||z — y||3, and a simple NN map ¢ using Algorithm 3 on the source and target images,
and then apply the map to new images. We present the results in Fig. 11 for three different training
tasks. Notice how the constraint on the map ¢ allows us to have a colour transfer that is robust to
outliers. In Fig. 12 in Appendix A.4, we present the results in the RGB space, seeing the images as
pixel point clouds.
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Evaluation Source

Training Source

Training Target 1

.

Training Target 3 (outlier + no weight clip)

Figure 11: Colour transfer using a NN map trained on the task of transferring the colour distribution
of the Training Source image onto three different Training Target images (column 1, rows 2 to 4). In
the second training (row 3), the target image presents an outlier in the colour distribution. In the
third training (row 4), the same target image with outliers is used, this time with no weight clipping.
For all trainings, the learned map is applied to the training image (second column) and to the test
image "Evaluation Source" (column 3).

5 Conclusion and Outlook

In this paper, we have considered the problem of finding an optimal transport map g between two
probability measures p and v under the constraint that g € GG, where G is a given set of functions
(L-Lipschitz, gradient of a convex function, for instance). We have given general assumptions to
ensure the existence of an optimal map g, we have studied the relationship between our problem and
many other concepts in Optimal Transport, and also the link with kernel methods. We have also
explained how to solve the problem from a practical point a view with convergence guarantees, and
an application to colour transfer.

We believe that there are two important but difficult questions that should be investigated in future
work. The first is the question of the uniqueness of an optimal map. We have given a partial answer
to this question, but it seems to be a difficult question in its whole generality. Having a result of
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uniqueness would then open the way to new questions, such as the use of g to compare measures in a
way similar to Linearised Optimal Transport, or the study of the statistical properties of g (related
to the sample complexity). The second important question is the addition of constraints in the kernel
method, more precisely: how to translate a set of functions G (like the set of gradients of convex
functions for instance) into a RKHS representation?
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A  Appendix

A.1 Continuous-to-Discrete Case: Semi-discrete OT

In the alternate optimisation scheme proposed in Section 3, the step with g fixed can be seen as
semi-discrete Optimal Transport, whenever the target measure v is discrete, and when the measure
g#u is absolutely continuous with respect to the Lebesgue measure. The condition g#u < £ arises
naturally whenever the source measure p is itself absolutely continuous, which we will assume for
this section.

Specifically, the sub-problem of computing

Te(g#u,v)

can be seen as a semi-discrete optimal transport problem between g#u and v (see [34] for a course
with a detailed section on semi-discrete OT). To apply semi-discrete optimal transport methods to
this sub-problem, we need to verify g#u < £. First, it follows from the definition that if g#.Z < .2,
then, since we assume p is absolutely continuous, g#p < £ would follow. In Lemma A.1, we provide
relatively general sufficient conditions on the map g : R¢ — R¢.

Lemma A.1. Let g : R? — R locally Lipschitz such that for £-a.e. x € R?, det dg(z) # 0. Then
gH#HL < L.

Remark A.2. By Rademacher’s theorem ([23], Theorem 3.2), a locally Lipschitz function is differ-
entiable £ -a.e..

Proof. First, we remind that J, := z +— |detdg(z)| (defined Z-almost-everywhere) is locally
integrable since g is locally Lipschitz. We now prove that g#.Z < .Z by considering the intersection
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of compact sets and Z-null sets. Let K C R? a compact set and E C R? a Borel set such that
Z(F) = 0. By the area formula ([23], Theorem 3.8), the following equality holds

/ Jg(ﬂﬂ)de/ Ho(g‘l({y})ﬂ’Cﬂg‘l(E))dyZ/%0(9‘1({y})ﬂ’C)dy, (42)
g~ 1(E)NK R4 E

where H° denotes the O-dimensional Hausdorff measure (the counting measure). The left-side ex-
pression in Eq. (42) is finite. Since .Z(E) = 0, it follows that the right-most term in Eq. (42) is 0,

thus
/ Jg(x)dz = 0.
g~ HE)NK

Since by assumption .J, is positive almost-everywhere, it follows that Z (g~ !(E) N K) = 0. Since the
compact set KC was chosen arbitrarily, we conclude that . (¢~ !(E)) = 0, which shows g#.¢ < .. O
A.2 Lemmas on Pseudo-inverses and Quantile Functions

To begin with, we introduce some notions regarding pseudo-inverses of non-decreasing functions.

Definition A.3. For ¢ : R — R non-decreasing, its right-inverse is defined as the function:
P R—R: VpeR, v (p):=inf {z €R | ¥(x) > p}.
For ¢ : R — R non-decreasing, its left-inverse is defined as the function:

p7 R—R: VpeR, ¢7(p):=sup{z eR| ¢(x) <p}.

These notions are particularly useful for the definition of the right-inverse of the cumulative dis-
tribution function of a probability measure p: F), := x — pu((—o00,z]), and for the left-inverse of
the function G, := x —— pu((—o00,x)). We recall and prove some well-known properties of pseudo-
inverses (see [21] for a detailed presentation of right-inverses). For a non-decreasing function 1, we
define ¢(—00) := lim,\ oo ¥(2) € RU {—o00} and 9(4+00) := lim, 5y ¥(x) € RU {+00}.

Lemma A.4. 1. Let ¥ : R — R non-decreasing and right-continuous. Then:
(a) For all (x,p) € R2, (x) > p <= x>y (p).
(b) If = (p) < +o0, Y(¥(p)) 2 p.
2. Let ¢ : R — R non-decreasing and left-continuous. Then:
(a) For all (x,p) € R?, ¢(z) < p <=z < ¢ (p).
(b) If 7 (p) > —o0, #(¢7(p)) < p-
3. Under the assumptions above, if additionally ¢ <, then ¢= > <.
Proof. We detail the proofs for claims 1.(a) and 1.(b), the arguments for 2.(a) and 2.(b) being
essentially the same. First, we let p € R such that ¢ (p) < 400, which is equivalent to supposing
A, # @, with A, := {z e R| ¢¥(x) > p}. We also suppose ) (p) > —oo, which is equivalent to

assuming that A, is lower-bounded. Since A, # @, we can choose a decreasing sequence (z,) € AEI
such that x, — ¥ (p). Since 1) is right-continuous and ¥ (p) € R, we have ¢(z,) ——
n—--—+oo

n—>-+o0o

(¥ (p)). However, since each z, € A,, we have ¢(z,) > p, and by taking the limit in the

inequality we deduce ¥ (¢ (p)) > p. If v (p) = —o0, then the same argument with x,, —+> —00
n—-—+0oo

and ¥ (—00) = limg\ o ¥(x) € RU {—00} also shows 1)(¢"(p)) > p, which concludes the proof of
1.(b).

For 1.(a), we first assume ¢ (p) < +oo. In this case, by 1b) we have ¢(¢* (p)) > p, thus
[ (p),+00) C A, Yet by definition of ¥ (p), x € A, = x > ¢ (p), thus we conclude
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= [¢¥*(p),+0o0), which is exactly the same statement as (z) > p < =z > ¥ (p). If
1 (p) = +o0, then the equivalence still holds, since ¢(z) > p <= x € A, with A4, = @.

Regarding 3., let p € R such that ¢ (p) > —oo. Then {z € R | ¢(x) < p} = (—00, ¢ (p)] by 2.a),
thus ¢ (p) = inf{x € R | ¢(x) > p}. The previous equality also holds when ¢ (p) = —oo. Now
since ¢ < 9, we have {z € R | ¢(z) > p} C {x € R | ¢y(x) > p}, and taking the infimum yields
¢~ (p) =¥ (p). -

Using this result, we can now prove Lemma 3.4.

Proof of Lemma 3.4 . First, notice that as a cumulative distribution function, F}, is non-decreasing
and right-continuous. Since g is non-decreasing, we have for p € (0,1) :

Fyulg 0 - (0) = Pxmys (90X) < g0 F (p)) > Pxoy (X < F () = Fy 0 F ().

Now if F;i"(p) < +oo, we have F), o F;"(p) > p by Lemma A.4 1.b). We now turn to the case
P (p) = +oo, which implies that Vo € R, F,(z) < p. Since F), is a cumulative distribution
function, this implies p > 1, which we excluded. We have shown that Fyy,(g o F; (p)) > p, thus by
definition of Fi,  (p), we have F o (p) < go F (p).

Regarding the converse inequality, we will show that the set N := {p €(0,1) : Fypy (p) <goF;- (p)}

g#u\P
is Lebesgue-null. Let p € N and a € {F;;FL“( ), g0y, (p )) As done earlier with F),, using

Lemma A.4 and the fact that Fj4, is a c.d.f. and that p < 1, we have Fj 4, o Fg#“( ) > p. Since
Fy4, is non-decreasing, we obtain p < Fyu,(a). We re-write Fyu, (o) using 1ts definition, then use

the fact that ¢ is non-decreasing:

P < Fypn(a) = Pxoy (9(X) < @) < Py (9(X) < g0 B (9)) < Py (X < F(p)) = Gu(F (p).

(43)
We now want to show that G, (F; (p)) < p. Since G, < F,, and since they are non-decreasing and
G, is left-continuous, and F), is right-continuous (by the axiomatic properties of 1), by Lemma A.4
item 3, we have G? > F /i_ . In particular, since G, is non-decreasing, we have

Gu(Fy (p) < Gu(G, () < p,

where the final inequality comes from Lemma A.4 item 2b), with ¢~ (p) > —oo since we chose p > 0.

We have shown that G, (F;(p)) < p, thus every equality in Eq. (43) is an equality, and as a result,

for any o € [ oau(P)sgo Foy (p )), we have Fyy, (o) = p, thus the right-inverse F,  has a jump-

discontinuity at p:
sup F;;E (q) = Fg#u( ) < inf g#u(q)

q<p p<q
We conclude that N is a subset of the set J of jump-discontinuities of F g‘_ " and since Fg;L ., is non-
decreasing, J is countable and thus of Lebesgue measure 0. As a result, we have for almost-every

A.3 Reminder on Reduction in RKHS methods

The reduction method in RKHS is known since [6] (Section 3), but given the simplicity of the
arguments and for the sake of self-completeness, we provide a proof and presentation in Lemma A.5.

Lemma A.5. Consider a cost function J : H — Ry which can be written as J(h) = J (h(z1),- -, h(zy)),
then if h* € H is a solution of
argmin J(h) + A||R||3,,
heH
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then hy, the orthogonal projection of h* onto V' (defined in Eq. (35)) verifies :
Vi € [[l,n]], hv(xl) = h*(xz),
and as a result J(hw) = J(h*), which leads to the following problem reduction:

argmin J(h) + A||h||3, = argmin J(R) + A||h|)3,. (44)
heH heV

Proof. To show that Vi € [1,n], hv(x;) = h*(z;), we will show that
Vi =Hy:={heH| Vie[l,n], h(z;) =0}.
Indeed,

he Hy<=Vie[l,n], g(x;) =0
—Vie[l,n], Yu e R, g(x;)-u=0
Vi e [1,n], Yu € RY, 0,9 =0
—Vie[l,n], Yu e R, (g, K(-,x)u)y =0
— feVt
where ¥ is the linear form h —— h(x) - u, whose Riesz representation in H is K(-,z)u by the

kernel reproducing property. We conclude the proof with the fact that as an orthogonal projection,
|hv |3, < ||h*||3,, which shows that the cost of hy is less than the cost of h*. O

A.4 Colour Transfer: RGB Point Cloud Viewpoint

In Fig. 12, we provide a visualisation of the colour transfer from Fig. 11 in the RGB space.
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Training Source Evaluation Source

Training Target 1 NN Transfer on Training Source NN Transfer on Evaluation Source

Training Target 2 (outlier) NN Transfer on Training Source NN Transfer on Evaluation Source

Training Target 3 (outlier + no weight clip) NN Transfer on Training Source NN Transfer on Evaluation Source

@

Figure 12: RGB space visualisation of the colour transfer from Fig. 11.
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