Computing Optimal Transport Barycentres

Eloi Tanguy, Julie Delon, Nathaël Gozlan

MAP5, Université Paris-Cité

March 4, 2025

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres

Optimal Transport

Ø Wasserstein Barycentres

• OT Barycentres

Oiscrete Case and Numerics

G Application to GMMs

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres

nal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics
00			

Application to GMMs

Discrete Optimal Transport

Optin 0000

Eloi Tanguy, Julie Delon, Nathaël Gozlan

al Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to
0	00000	000000000	00000	00000000
~				

Discrete Optimal Transport

Optin 0000

Assignment Cost:

$$\frac{1}{5} \times c(x_1, y_1) + \frac{1}{5} \times c(x_1, y_3) + \frac{1}{5} \times c(x_2, y_3) + \frac{2}{5} \times c(x_3, y_2).$$

Constraints on $\pi \in \mathbb{R}^{3 \times 3}_+$: $\pi \mathbf{1} = (2/5, 1/5, 2/5), \ \pi^\top \mathbf{1} = (1/5, 2/5, 2/5).$

Optimal Transport Cost :
$$\min_{\pi} \sum_{i,j} c(x_i, y_j) \pi_{i,j}$$
.

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Computing Optimal Transport Barycentres

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application t
00000				

OT between discrete measures

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres
 Optimal Transport
 Wasserstein Barycentres
 OT Barycentres
 Discrete Case and Numerics
 Applic

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

OT Cost and 2-Wasserstein Distance

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X,Y)].$$
$$W_{2}^{2}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} \|x-y\|_{2}^{2} d\pi(x,y).$$

 Optimal Transport
 Wasserstein Barycentres
 OT Barycentres
 Discrete Case and Numerics

 00000
 00000
 000000000
 00000

Application to GMMs

OT Cost and 2-Wasserstein Distance

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X,Y)].$$
$$W_{2}^{2}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} \|x-y\|_{2}^{2} d\pi(x,y).$$

Bures-Wasserstein $W_2^2(\mathcal{N}(m_1, S_1), \mathcal{N}(m_2, S_2)) = \|m_1 - m_2\|_2^2 + \operatorname{Tr}\left(S_1 + S_2 - 2(S_1^{1/2}S_2S_1^{1/2})^{1/2}\right)$

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Eloi Tanguy, Julie Delon, Nathaël Gozlan

 Optimal Transport
 Wasserstein Barycentres
 OT Barycentres
 Discrete Case and Numerics
 Application to GMM.

 00000
 00000000
 00000
 00000
 0000000
 00000000

Push-forward measures and OT maps

Image Measure: $f \# \mu := \operatorname{Law}_{X \sim \mu}[f(X)]$

Eloi Tanguy, Julie Delon, Nathaël Gozlan

 Optimal Transport
 Wasserstein Barycentres
 OT Barycentres
 Discrete Case and Numerics
 Application to GMMs

 0000
 00000000
 00000
 00000
 0000000
 00000000

Push-forward measures and OT maps

Image Measure: $f \# \mu := \operatorname{Law}_{X \sim \mu}[f(X)]$

Brenier's Theorem

If $c(x, y) = ||x - y||_2^2$, and $\mu \ll \mathscr{L}^d$, then there is a unique solution $\pi^* = (I, \nabla \varphi) \# \mu$, with φ convex.

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport OT Barvcentres 00000

Push-forward measures and OT maps

Image Measure: $f \# \mu := \text{Law}_{X \sim \mu}[f(X)]$

• Optimal Transport

Ø Wasserstein Barycentres

• OT Barycentres

Oiscrete Case and Numerics

6 Application to GMMs

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	0●000	000000000		00000000
From Euclid	ean Combinations	to Fréchet M	eans	

$$\overline{x} = \sum_{k=1}^{K} \lambda_k y_k$$

$$\overline{x} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{k=1}^{K} \lambda_k \|x - y_k\|_2^2$$

Optimal Transport 00000	Wasserstein Barycentres 0●000	OT Barycentres 000000000	Discrete Case ar 00000	nd Numerics	Application to GMMs 00000000
From Euclide	an Combinations	to Fréchet M	eans		
	$\overline{x} = \sum_{k=1}^{K} \lambda_k y_k$				• <i>y</i> ₃
$\overline{x} = \underset{x \in \mathcal{X}}{\operatorname{arg}}$	$\min_{\mathbb{R}^d} \sum_{k=1}^K \lambda_k \ x - y\ $	$\ k\ _{2}^{2}$	<i>y</i> ₁ ●	• x • y ₂	
Fréchet mea $\overline{x} \in \mathrm{an}$	an: $\underset{x \in \mathcal{X}}{\operatorname{sgmin}} \ \sum_{k=1}^{K} d(x, y_k)$	2.	<i>y</i> ₁	• x • <u>y</u> 2	• y ₃

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Computing Optimal Transport Barycentres

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GM
	00000			

Fixed-Point Algorithm for Fréchet Means on Manifolds

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMN
	00000			

Fixed-Point Algorithm for Fréchet Means on Manifolds

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Application to GMMs

2-Wasserstein Barycentres (Agueh & Carlier 2011 [1])

$$\underset{\mu \in \mathcal{P}(\mathbb{R}^d)}{\operatorname{argmin}} \ \sum_{k=1}^{K} \lambda_k \mathrm{W}_2^2(\mu, \nu_k).$$

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres MAP5, Université Paris-Cité

• Optimal Transport

Ø Wasserstein Barycentres

OT Barycentres

Oiscrete Case and Numerics

6 Application to GMMs

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres
 Optimal Transport
 Wasserstein Barycentres
 OT Barycentres
 Discrete Case and Numerics
 Application to GMM:

 00000
 00000
 0000000
 00000
 0000000
 00000000

Motivation for OT barycenters with generic costs

W₁(
$$\mu, \nu$$
) := $\inf_{\pi \in \Pi(\mu, \nu)} \int ||x - y||_2 d\pi(x, y).$

Find $\mu \in \mathcal{P}(\mathbb{R}^3)$ minimising $\sum_k \frac{1}{3} W_1(P_k \# \mu, \nu_k)$ where $\nu_k \in \mathcal{P}(\mathbb{R}^2)$.

Generalises Delon et al. 2021 [5] where $c_k(x, y) = ||P_k(x) - y||_2^2$.

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	00●000000		00000000
Generalising V	Vasserstein Baryc	entres		

Setting:

- $(\mathcal{X}, d_{\mathcal{X}})$ compact metric space for barycentres.
- $(\mathcal{Y}_k, d_{\mathcal{Y}_k})$ compact metric spaces for measures ν_k .
- $c_k : \mathcal{X} \times \mathcal{Y}_k \longrightarrow \mathbb{R}_+$ continuous cost functions.

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	00●000000		00000000
Generalising V	Vasserstein Baryo	centres		

Setting:

- $(\mathcal{X}, d_{\mathcal{X}})$ compact metric space for barycentres.
- $(\mathcal{Y}_k, d_{\mathcal{Y}_k})$ compact metric spaces for measures ν_k .
- $c_k : \mathcal{X} \times \mathcal{Y}_k \longrightarrow \mathbb{R}_+$ continuous cost functions.

$$\underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{argmin}} V(\mu), \quad V(\mu) := \sum_{k=1}^{K} \mathcal{T}_{c_k}(\mu, \nu_k).$$

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	000000000		00000000
Generalising	Wasserstein Baryo	centres		

Setting:

- $(\mathcal{X}, d_{\mathcal{X}})$ compact metric space for barycentres.
- $(\mathcal{Y}_k, d_{\mathcal{Y}_k})$ compact metric spaces for measures ν_k .
- $c_k : \mathcal{X} \times \mathcal{Y}_k \longrightarrow \mathbb{R}_+$ continuous cost functions.

$$\underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{argmin}} V(\mu), \quad V(\mu) := \sum_{k=1}^{K} \mathcal{T}_{c_k}(\mu, \nu_k).$$

Assumption: The ground barycenter function

$$B(y_1, \cdots, y_K) := \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^K c_k(x, y_k)$$

is well-defined.

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport 00000	Wasserstein Barycentres 00000	OT Barycentres 000000000	Discrete Case and Numerics	Application to GMMs 00000000
Algorithm C	onvergence			
Ground	Barycentre Lemma	a		

$$\sum_{k} c_k(x, y_k) \ge \sum_{k} c_k(B(y_1, \cdots, y_K), y_k) + \delta(x, B(y_1, \cdots, y_K))$$

Case $||x - y||_2^2$: simply $\sum_k \lambda_k ||x - y_k||_2^2 = \sum_k ||\overline{x} - y_k||_2^2 + ||x - \overline{x}||_2^2$.

If μ is a subsequential limit of (μ_t) then $\mu \in G(\mu)$.

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport 00000	Wasserstein Barycentres 00000	OT Barycentres 000000000	Discrete Case and Numerics	Application to GMMs 00000000
Entropic Bar	rycentres			
			Entrop	ic plan <i>ε</i> =0.03
σ	· c f			

$$\mathcal{T}_{c,\varepsilon}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c \mathrm{d}\pi + \varepsilon \operatorname{KL}(\pi|\mu \otimes \nu).$$

$$V_{\varepsilon}(\mu) := \sum_{k=1}^{K} \mathcal{T}_{c,\varepsilon}(\mu,\nu_k).$$

$$G_{\varepsilon}(\mu) := B \# \gamma, \text{ with } \gamma_{0,k} = \Pi^*_{c_k,\varepsilon}(\mu,\nu_k).$$

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Computing Optimal Transport Barycentres

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	00000000●		00000000
Barycentric Projections				

Replace a coupling π with a map $\overline{\pi}$.

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	00000000		00000000
Barvcentric I	Projections			

Replace a coupling π with a map $\overline{\pi}$.

$$\overline{\pi}(x) = \int y \mathrm{d}\pi_x(y).$$
$$\overline{\pi}(x) = \mathbb{E}_{(X,Y)\sim\pi}[Y|X=x].$$
$$\overline{\pi} = \operatorname*{argmin}_{f \in L^2(\mu)} \int \|f(x) - y\|_2^2 \mathrm{d}\pi(x,y).$$

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport 00000	Wasserstein Barycentres 00000	OT Barycentres	Discrete Case and Numerics	Application to GMMs 00000000
Barvcentric I	Proiections			

Replace a coupling π with a map $\overline{\pi}$.

$$\overline{\pi}(x) = \int y d\pi_x(y).$$
$$\overline{\pi}(x) = \mathbb{E}_{(X,Y)\sim\pi}[Y|X=x].$$
$$\overline{\pi} = \operatorname*{argmin}_{f \in L^2(\mu)} \int \|f(x) - y\|_2^2 d\pi(x,y).$$

• Optimal Transport

Ø Wasserstein Barycentres

o OT Barycentres

Oiscrete Case and Numerics

6 Application to GMMs

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport Barycentres

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	000000000		00000000
Discrete G				

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	000000000	0●000	00000000
Discusto C				

Discrete G

Eloi Tanguy, Julie Delon, Nathaël Gozlan

MAP5, Université Paris-Cité

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Computing Optimal Transport Barycentres

MAP5, Université Paris-Cité

 $\operatorname{argmin}_{\mu} \sum_{k=1}^{4} \frac{1}{4} W_2^2(P_k \# \mu, \nu_k)$ where P_k is the projection onto circle k.

First 5 Steps Fixed-point GWB solver

Eloi Tanguy, Julie Delon, Nathaël Gozlan

• Optimal Transport

Ø Wasserstein Barycentres

o OT Barycentres

Oiscrete Case and Numerics

6 Application to GMMs

Eloi Tanguy, Julie Delon, Nathaël Gozlan Computing Optimal Transport <u>Barycentres</u>

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	000000000		○●○○○○○○
OT between (GMMs			

$$W_2^2(\mathcal{N}(m_1, S_1), \mathcal{N}(m_2, S_2)) = \|m_1 - m_2\|_2^2 + \underbrace{\operatorname{Tr}\left(S_1 + S_2 - 2(S_1^{1/2}S_2S_1^{1/2})^{1/2}\right)}_{d_{\mathrm{BW}}^2(S_1, S_2) :=}.$$

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	000000000		○●○○○○○○
OT between	GMMs			

$$W_2^2(\mathcal{N}(m_1, S_1), \mathcal{N}(m_2, S_2)) = \|m_1 - m_2\|_2^2 + \underbrace{\operatorname{Tr}\left(S_1 + S_2 - 2(S_1^{1/2}S_2S_1^{1/2})^{1/2}\right)}_{d_{\mathrm{BW}}^2(S_1, S_2) :=}$$

Ground space: $(\mathcal{X}, d) = (\mathcal{Y}_k, d_{\mathcal{Y}_k}) = (\mathcal{N}, W_2)$ with ground cost $c = W_2^2$.

$$\mu = \sum_{i=1}^{n} a_i \delta_{\mathcal{N}(m_i, S_i)}, \ \nu = \sum_{j=1}^{m} b_j \delta_{\mathcal{N}(m'_j, S'_j)} \in \mathcal{P}(\mathcal{N});$$

$$\mathcal{T}_{W_2^2}(\mu,\nu) = \min_{\pi \in \Pi(a,b)} \sum_{i,j} (\|m_i - m'_j\|_2^2 + d_{BW}^2(S_i,S'_j))\pi_{i,j}.$$

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Optimal Transport	Wasserstein Barycentres	OT Barycentres	Discrete Case and Numerics	Application to GMMs
00000	00000	000000000		0000000
Ground Baryc				

Gaussian barycentres (Agueh & Carlier 2011 [1]).

$$B(\mathcal{N}(m_1, S_1), \cdots, \mathcal{N}(m_K, S_K)) = \mathcal{N}(\overline{m}, \overline{S}),$$

$$\overline{m} := \sum_{k=1}^{K} \lambda_k m_k, \ \overline{S} := \operatorname*{argmin}_{S \in S_d^{++}(\mathbb{R})} \sum_{k=1}^{K} \lambda_k d_{\mathrm{BW}}^2(S, S_k).$$

Fixed-point computation for \overline{S} :

$$G_{\mathcal{N}}(S) = S^{-1/2} \left(\sum_{k=1}^{K} \lambda_k (S^{1/2} S_k S^{1/2})^{1/2} \right)^2 S^{-1/2}.$$

Riemannian gradient descent interpretation by Altschuler et al. 2021 [2].

Optimal Transport 00000	Wasserstein Barycentres 00000	OT Barycentres 000000000	Discrete Case and Numerics	Application to GMMs
GMM Barycer	ntre			

$$\mu = \sum_{i=1}^{n} a_i \delta_{\mathcal{N}(m_i, S_i)},$$

$$\nu_k = \sum_{j=1}^{n_k} b_k \delta_{\mathcal{N}(m_{k,j}, S_{k,j})},$$

$$V(\mu) = \sum_{k=1}^{K} \lambda_k \mathcal{T}_{\mathrm{W}_2^2}(\mu, \nu_k).$$

Optimal Transport 00000

Wasserstein Barycentres

OT Barycentres

Discrete Case and Numerics

Application to GMMs

GMM Barycentre Example

Eloi Tanguy, Julie Delon, Nathaël Gozlan

Computing Optimal Transport Barycentres

MAP5, Université Paris-Cité

Optimal Transport 00000	Wasserstein Barycentres	OT Barycentres 000000000	Discrete Case and Numerics	Application to GMMs

- Talk based on *ET*, Julie Delon and Nathaël Gozlan (2024): Computing Barycentres of Measures for Generic Transport Costs. arXiv preprint 2501.04016.
- All code at https://github.com/eloitanguy/ot_bar
- Functions (soon) released on https://pythonot.github.io/
- Slides at https://eloitanguy.github.io/publications/

.Thanks!

Optimal Transport 00000	Wasserstein Barycentres	OT Barycentres 00000000	Discrete Case and Numerics	Application to GMMs 000000●●

- Martial Agueh and Guillaume Carlier.
 Barycenters in the Wasserstein space.
 SIAM Journal on Mathematical Analysis, 43(2):904–924, 2011.
- [2] Jason Altschuler, Sinho Chewi, Patrik R Gerber, and Austin Stromme. Averaging on the bures-wasserstein manifold: dimension-free convergence of gradient descent.

Advances in Neural Information Processing Systems, 34:22132–22145, 2021.

[3] Pedro C Álvarez-Esteban, E Del Barrio, JA Cuesta-Albertos, and C Matrán.

A fixed-point approach to barycenters in Wasserstein space. Journal of Mathematical Analysis and Applications, 441(2):744–762,

2016.

Optimal Transport 00000	Wasserstein Barycentres	OT Barycentres 000000000	Discrete Case and Numerics	Application to GMMs 000000●●

[4] Marco Cuturi and Arnaud Doucet.

Fast computation of Wasserstein barycenters.

In Eric P. Xing and Tony Jebara, editors, *Proceedings of the 31st International Conference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, pages 685–693, Bejing, China, 22–24 Jun 2014. PMLR.

[5] Julie Delon, Nathaël Gozlan, and Alexandre Saint-Dizier. Generalized Wasserstein barycenters between probability measures living on different subspaces, 2021.